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Preface

he purpose of this book is to provide the student, the laboratory

technician, and the engineer with a comprehensive and practical
source volume on SMITH CHARTS and their related overlays.

In general, the book describes the mechanics of these charts in
relation to the guided-wave and circuit theory and, with examples,
their practical uses in waveguide, circuit, and component applications.
It also describes the construction of boundaries, loci, and forbidden
regions, which reveal overall capabilities and limitations of proposed
cirguits and guided-wave systems.

The Introduction to this book relates some of the modifications of
the basic SMITH CHART coordinates which have taken place since its
inception in the early 1930s.

Qualitative concepts of the way in which electromagnetic waves are
propagated along conductors are given in Chap. 1. This is followed in
Chaps. 2 and 3 by an explanation of how these ¢oncepts are related to
their quantitative representation on the “normalized” impedance co-
ordinates of the SMITH CHART.

Chapters 4 and 5 describe the radial and peripheral scales of this
chart, which show, respectively, the magnitudes and angles of various
linear and complex parameters which are related to the impedance
coordinates of the chart, In Chap. 6 an explanation is given of equiva-
lent circuit representations of impedance and admittance on the chart
coordinates.

Several uses of expanded portions of the chart coordinates are
described in Chap. 7, including the graphical determination therefrom
of bandwidth and ¢ of resonant and antiresonant line sections.

The complex transmission coefficients, their representations on the
SMITH CHART, and their uses form the subject of Chap. 8. It is
shown therein how voltage and current amplitude and phase (standing
wave amplitude and wave position} are represented by these coefficients,

Impedance matching by means of single and double stubs, by single
and double slugs, and by lumped L-circuits is described in Chaps. 9 and

vii
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10. Chapter 11 provides examples, illustrating how loci, boundaries,
and forbidden areas are established and plotted.

The measurement of impedance by sampling voltage or current along
the line at discrete positions, where a slotted line section would be
excessively long, is described in Chap. 11.

The effect of negative resistance loads on transmission lines, and
the construction and use of the negative SMITH CHART and its special
radial scales, are described in Chap. 12. Stability criteria as determined
from this chart are indicated for negative resistance devices such as
reflection amplifiers.

Chapter 13 discusses, with examples, a number of typical applications
of the chart.

Chapter 14 describes several instruments which incorporate SMITH
CHARTS as a basic component, or which are used with SMITH CHARTS
to assist in plotting data thereon or in interpreting data therefrom.

For the reader who may desire a more detailed discussion of any
particular phase of the theory or application of the chart a biblio-
graphy is included to which references are made as appropriate through-
out the text.

Fundamental mathematical relationships for the propagation of
electromagnetic waves along transmission lines are given in Appendix
A and details of the conformal transformation of the original rectangular
to the circular SMITH CHART coordinates are included in Appendix B.
A glossary of terms used in connection with SMITH CHARTS follows
Chap. 14.

Four alternate constructions of the basic SMITH CHART coordinates,
printed in red ink on translucent plastic, are supplied in an evelope in
the back cover of the book. All of these are individually described in
the text. By superimposing these translucent charts on the general-
purpose complex waveguide and circuit parameter charts described
throughout the book, with which they are dimensionally compatible,
it is a simple matter to correlate them graphically therewith and to
transfer data or other information from one such plot to the other.

The overlay plots of waveguide parameters used with these translu-
cent SMITH CHARTS include the complex transmission and reflection
coefficients for both positive and negative component coordinates,
normalized voltage and current amplitude and phase relationships,
normalized polar impedance coordinates, voltage and current phase and
magnitude relationships, loci of current and voltage probe ratios, L-type
matching circuit components, etc. These are generally referred to as
“overlays” for the SMITH CHART because they were originally pub-
lished as transparent loose sheets in bulletin form and because they
were 50 used. However, as a practical matter it was found to be
difficult to transfer the parameters or data depicted thereon to the
SMITH CHART, which operation is more generally required. Accord-
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ingly, they are printed here on opaque bound pages and used as the
background on which the translucent SMITH CHARTS in the back
cover can be superimposed. The bound background charts are printed
in black ink to facilitate visual separation of the families of curves
which they portray from the red impedance and/or admittance curves
on the loose translucent SMITH CHARTS. The latter charts have a
matte finish which is erasable to allow pencil tracing of data or other
information directly thereon.

Phillip H. Smith
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Introduction

.1 GRAPHICAL VS. MATHEMATICAL REPRESENTATIONS

he physical laws governing natural phenomena can generally be

represented either mathematically or graphically. Usually the more
complex the law the more useful is its graphical representation. For
example, a simple physical relationship such as that expressed by Ohm’s
law does not require a graphical representation for its comprehension or
use, whereas laws of spherical geometry which must be applied in
solving navigational problems may be sufficiently complicated to justify
the use of charts for their more rapid evaluation. The ancient astrolabe,
a Renaissance version of which is shown in Fig. .1, provides an interest-
ing example of a chart which was used by mariners and astronomers for
over 20 centuries, even though the mathematics was well understood.

The laws governing the propagation of electromagnetic waves along
transmission lines are basically simple; however, their mathematical
representation and application involves hyperbolic and exponential
functions (see Appendix A) which are not readily evaluated without
the aid of charts or tables. Hence these physical phenomena lend
themselves quite naturally to graphical representation.

Tables of hyperbolic functions published by A. E. Kennelly [3]
in 1914 simplified the mathematical evaluation of problems relating
to guided wave propagation in that period, but did not carry the
solutions completely into the graphical realm.

.2 THE RECTANGULAR TRANSMISSION LINE CHART

The progenitor of the circular transmission line chart was rectangular
in shape. The original rectangular chart devised by the writer in 1931 is
shown in Fig. 1.2. This particular chart was intended only to assist in
the solution of the mathematics which applied to transmission line
problems inherent in the design of directional shortwave antennas for

Xl
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Fig.1.1. A Renaissance version of the oldest scientific instrument in the world. {(Dant/ des Renaldi, 1940}
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Bell System applications of that period; its broader application was
hardly envisioned at that time.

The chart in Fig. 1.2 is a graphical plot of a modified form of J. A.
Fleming's 1911 “telephone™ equation [2], as given in Chap. 2 and in
Appendix A, which expresses the impedance characteristics of high-
frequency transmission lines in terms of measurable effects of elec-
tromagnetic waves propagating thereon, namely, the standing-wave
amplitude ratio and wave position. Since this chart displays impedances
whose complex components are “‘normalized,” ie., expressed as a
fraction of the characteristic impedance of the transmission line under
consideration, it is applicable to all types of waveguides, including open-
wire and coaxial transmission lines, independent of their characteristic
impedances. In fact, it is this impedance normalizing concept which
makes such a general plot possible.

Although larger and more accurate rectangular charts have subse-
quently been drawn, their uses have been relatively limited because of
the limited range of normalized impedance values and standing-wave
amplitude ratios which can be represented thereon. This stimulated
several attempts by the writer to transform the curves into a more
useful arrangement, among them the chart shown in Fig. 7.7 which
was constructed in 1936.

1.3 THE CIRCULAR TRANSMISSION LINE CHART

The initial clue to the fact that a conformal transformation of the
circular orthogonal curves of Fig. 1.2 might be possible was provided by
the realization that these two families of circles correspond exactly to
the lines of force and the equipotentials surrounding a pair of equal and
opposite parallel line charges, as seen in Fig. 1.1. It was then a simple
matter to show that a bilinear conformal transformation [55,109]
would, in fact, produce the desired results (see Appendix B}, and the
circular form of chart shown in Fig. [.3, which retained the normalizing
feature of the rectangular chart of Fig. 1.2, was subsequently devised
and constructed. All possible impedance values are representable
within the periphery of this later chart. An article describing the
impedance chart of Fig. 1.3 was published in January, 1939 [101].

During World War II at the Radiation Laboratory of the Massachusetts
Institute of Technology, in the environment of a flourishing microwave
development program, the chart first gained widespread acceptance and
publicity, and first became generally referred to as the SMITH CHART.

Descriptive names have in a few instances been applied to the
SMITH CHART (see glossary) by other writers; these include “Reflec-
tion Chart,” ““Circle Diagram {of Impedance),” “Immittance Chart,” and
“Z-plane Chart.” However, none of these are in themselves sufficiently

xXv
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definitive to be used unambiguously when c¢omparing the SMITH
CHART with similar charts or with its overlay charts as discussed in
this text. For these reasons, without wishing to appear immodest, the
writer has decided to use the more generally accepted name in the
interest of both clarity and brevity.

Drafting refinements in the layout of the impedance coordinates
were subsequently made and additional scales were added showing the
relation of the reflection coefficient to the impedance coordinates,
which increased the utility of the chart. These changes are shown in
Fig. I.4. A second article published in 1944 incorporated these improve-
ments [102]. This later article also described the dual use of the chart
coordinates for impedances and/or admittances, and for converting
series components of impedance to their equivalent parallel component
values.

In 1949 the labeling of the chart impedance coordinates was changed
so that the chart would display directly either normalized impedance
or normalized admittance. This change is shown in the chart of Fig.
2.3, On this later chart the specific values assigned to e¢ach of the
coordinate curves apply, optionally, to either the impedance or to the
admittance notations.

In 1966 additional radial and peripheral scales were added to portray
the fixed relationship of the complex transmission coefficients to the
chart coordinates, as shown in Fig. 8.6.

1.4 ORIENTATION OF IMPEDANCE COORDINATES

The charts in Figs. 1.2 and 1.3 as originally plotted have their
resistance axes vertical. It became apparent shortly after publication
of Fig. 1.3, as thus oriented, that a horizontal representation of the
resistance axis was preferable since this conformed to the accepted
convention represented by the Argand diagram in which complex
numbers (x * {y) are graphically represented with the real (x) com-
ponent horizontal and the imaginary (y) component vertical.

Therefore, subsequently published SMITH CHARTS have generally
been shown, and are shown throughout the remainder of this book,
with the resistance (R) axis horizontal, and the reactance (% jX) axis
vertical;, inductive reactance (+ jX) is plotted above, and capacitive
reactance (— fX} below the resistance axis.

1.5 OVERLAYS FOR THE SMITH CHART

Axially symmetric overlays for the SMITH CHART were inherent
in the first chart, as represented by the peripheral and radial scales



Xix

INTRODUCTION

Wi TACE OR CLRRENT £
LTS RATIQ  EHSHIPATION AGE
W
uaz | DB LPsE 0SS
N, MAz, DB UTH. |STEPS COEE DS
ST mron re0 QT
dA% g g r
ted an m F20 e
204 < 1
1 20 Efw ]
] 2
] B 1
- B o
L anpd FI=
T EL T
' “lanaar

T
!
e
ﬂt‘ﬂoo

TowaRD Lol ——=

bt

Improved transmission line calculator. (Efectronics, January, 1944.)

Fig. 1.4,



xX INTRODUCTION

for the chart coordinates. These overlays include position and amplitude
ratio of the standing waves, and magnitude and phase angle of the
reflection coefficients. Additionally, overlays showing attenuation and
reflection functions were represented by radial scales alone (see Fig.
.4,

In the present text 26 additional general-purpose overlays (both
symmetrical and asymmetrical) for which useful applications exist and
which have been devised for the SMITH CHART are presented.
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| 1.1 GRAPHICAL REPRESENTATION

he SMITH CHART is, fundamentally, a

graphical representation of the interrela-
tionships between electrical parameters of a
uniform waveguide. Accordingly, its design
and many of its applications can best be de-
scribed in accordance with principles of guided
wave propagation.

The qualitative descriptions of the electrical
behavior of a waveguide, as presented in this
chapter, will provide a background for better
understanding the significance of various inter-
related electrical parameters which are more
quantitatively described in the following chap-
ter. As will be seen, many of these param-
eters are represented directly by the coordi-
nates and associated scales of a SMITH
CHART, and their relationships are basic to
its construction.

1.2 WAVEGUIDE STRUCTURES

The term waveguide, as used in this book,
will be understood to include not only hollow

cylindrical uniconductor waveguides, but all
other physical structures used for guiding

CHAPTER 1

Guided
Wave
Propagation

electromagnetic waves (except, of course, heat
and light waves). Included are multi-wire
transmission line, strip-line, coaxial line, tri-
plate, etc. Waveguide terms as they first
appear in the text will be italicized to indicate
that their definitions are in accordance with
definitions which have been standardized by
the Institute of Electrical and FElectronics
Engineers [11], and are currently accepted by
the United States of America Standards Insti-
tute (USASI). (Also, terms and phrases are
sometimes italicized in lieu of underlining to
provide emphasis or to indicate headings or
subtities. )

Although it may ultimately be of consider-
able importance in the solution of any practi-
cal waveguide problem, the particular wave-
guide structure is of interest in connection
with the design or use of the SMITH CHART
only to the extent that its configuration, cross-
sectional dimensions in wavelengths, and mode
of propagation establish two basic electrical
constants of the waveguide, viz., the propaga-
tion constant and the characreristic impedance.
Both of these constants are further discussed
in Chap. 2.



2 ELECTRONIC APPLICATIONS OF THE SMITH CHART

1.3 WAVEGUIDE WAVES

Waveguide waves can propagate in numer-
ous modes, the exact number depending upon
the configuration and size of the conductor
(or conductors) in wavelengths. Modes of
propagation in a waveguide are generally
described in terms of the electric and mag-
netic field pattern in the vicinity of the
conductors, with which each possible mode
is uniquely associated.

As is the case for the waveguide structure,
the mode of propagation does not play adirect
role in the design or use of the SMITH CHART.,

ELECTRIC FIELD
MAGNETIC FIELD

Fig. 1.1.

ELECTRIC FIELD ————~—
MAGNETIC FIELD

Its importance, however, lies in the fact that
cach mode is characterized by a different
value for the propagation constant and char-
acteristic impedance to which the variables
of the problem must ultimately be related.

A specific waveguide structure may provide
the means for many different modes of propa-
gation although only one will generally be
selected for operation. Field patterns for the
more common dominant mode in a two-wire
and in a coaxial transmission line are shown
in Figs. 1.1 and 1.2, respectively. In this
mode both electric and magnetic field com-
ponents of the wave lie entirely in planes

M
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Fig. 1.2.  Dominant moda figld pattern on coaxial transmission line.



| transverse to the direction of propagation,
} and the wave is, therefore; called a transverse
L electromagnetic (TEM) wave. There is no
| longitudinal component of the field in this
L mode.

t  When the mode of propagation is known in
b a particular uniconductor waveguide, and
_' operation is at a particular frequency, the
:Z waveguide wavelength can readily be com-
b puted. The SMITH CHART can then be used
in the same way in which it is used for
problems involving the simple TEM wave in
| two-wire or coaxial transmission lines.

A further discussion of the subject of
propagation modes and their associated field
i patterns will not be undertaken herein since
: the reader who may be interested will find
| adequate discussions of this subject in the
F literuture [32,52].

t 14 TRAVELING WAVES

The propagation of electromagnetic wave
energy along a waveguide can perhaps best be
explained in terms of the component traveling
waves thereon.
_ If 2 continuously alternating sinusoidal volt-
age is applied to the input terminals of a wave-
t guide, a forward-traveling voltage wave will be
instantly launched into the waveguide. This
wave will propagate along the guide as a
Fcontinuous wave train in the only direction
possible, namely, toward the load, at the
characteristic wave velocity of the waveguide.
Simultaneously with the generation of a
- forward-traveling voltage wave, an accompany-
- ing forward-traveling current wave is engen-
- dered, which also propagates along the wave-

guide. The forward-traveling current wave is in

phase with the forward-traveling voltage wave

at all positions along a lossless waveguide.

These two component waves make up the
forward-traveling electromagnetic wave.

GUIDED WAVE PROPAGATION 3

15 SURGE IMPEDANCE

The input impedance that the forward-
traveling clectromagnetic wave encounters as
it propagates along a uniform waveguide is
called the surge impedance or the initial
sending-end impedance. In the case of a
uniform waveguide it is called, specifically,
the characteristic impedance. The input im-
pedance has, initially, a constant value inde-
pendent of position along the waveguide. Its
magnitude is independent of the magnitude or
of the phase angle ol the load reflection
coefficient, it being assumed that in this brief
interval the forward-traveling electromagnetic
wave has not yet arrived at the load terminals.
At any given position along the waveguide
the forward-traveling electromagnetic wave has
a sinusoidal amplitude variation with time as
the wave train passes this position.

1.6 ATTENUATION

As the forward-traveling voltage and cur-
rent waves propagate along the waveguide
toward the load, some power will be continu-
ously dissipated along the waveguide. This
is due to the distributed series resistance of
the conductor {or conductors) and to the
distributed shunt leakage resistance encoun-
tered, respectively, by the longitudinal currents
and the transverse displacement currents in
the dielectric medium between conductors.
This dissipation of power is called attenuation,
or one-way transmission loss. Attenuation
does not change the initial input impedance
of the waveguide as seen by the forward-
traveling wave energy as it progresses along the
waveguide, since it is uniformly distributed,
but it nevertheless diminishes the wave power
with advancing position along the waveguide.
Atienuation should not be confused with the
total dissipation of a waveguide measured
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under steady-state conditions, as will be ex-
plained later.

Upon arrival at the load, the forward-
traveling voltage and current wave energy will
encounter a load impedance which may or
may not be of suitable value to “match” the
characteristic impedance of the waveguide
and, thereby, to absorb all of the energy
which these waves carry with them.

1.7 REFLECTION

Assume for the moment that the load im-
pedance matches* the characteristic imped-
ance of the waveguide, and that the load,
therefore, absorbs all of the wave energy
impinging thereon. There will then be no
reflection of energy from the load. In
this case the forward-traveling wave will be
the only wave along the waveguide. A
voltmeter or ammeter placed across, or at
any position along the waveguide, respec-
tively, would then indicate an rms value in
accordance with Ohm’s law for alternating
currents in an impedance which is equivalent
to the characteristic impedance of the wave-
guide.

If, on the other hand, the load impedance
does not match the characteristic impedance
of the waveguide, and therefore does not
absorb all of the incident electromagnetic
wave energy available, there will be reflected
wave energy from the mismatched load im-
pedance back into the waveguide. This results
in a rearward-traveling current and voltage
wave. The complex ratio of the rearward-
traveling voltage wave to the forward-traveling
voltage wave at the load is called the voltage
reflection coefficient, Likewise, the complex

*If the waveguide is lossy its characteristic im pedance will
be complex, that is, Ry - jXp. For a conjugate match, the
condition which provides maximum power transfer, the load
impedance, should be R; + jX;, where R; = B3 and
X = Xo.

ratio of the rearward-traveling current wave
to the forward-traveling current wave at the
load is called the current reflection coefficient.
If the waveguide is essentially lossless, the
magnitude of the voltage reflection coefficient
will be constant at all points from the load
to the generator and will be equal to the
voltage reflection coefficient magnitude at the
load. If there is attenuation along the wave-
guide, the magnitude of the voltage reflection
coefficient will gradually diminish with dis-
tance toward the generator, due to the addi-
tional attenuation encountered by the re-
flected-wave energy, as compared to that
encountered by the incident-wave energy in
its shorter path. Thus, there will appear to be
less reflected energy at the input to such a
waveguide than at the load.

The voltage reflection coefficient will also
vary in phase, with position along the wave-
guide. The phase angle of the voltage re-
flection coefficient at any point along a
waveguide is determined by the phase shift
undergone by the reflected voltage wave in
comparison to that of the incident voltage
wave at the point under consideration, in-
cluding any phase change at the load itself.
If the reflection coefficient phase angle exceeds
180° (representing a path difference of more
than one-half wavelength between reflected-
and incident-wave energy), the relative phase
angle of the voltage reflection coefficient only
is usually of interest. This is obtainable by
subtracting the largest possible integer multiple
of 180° (corresponding to integer lengths of
one-quarter wavelengths of waveguide) from
the absolute or total phase angle of the voltage
reflection coefficient, to yield a relative phase
angle between plus and minus 180°.

The traveling current waves on a waveguide,
which accompany traveling voltage waves, will
likewise be reflected by a mismatched load
impedance. The magnitude of the current
reflection coefficient at all points along a
waveguide is identical to that of the voltage

P
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reflection coefficient in all cases. The phase
angle of the current reflection coefficient at
any given point along the waveguide may, how-
ever, differ from that of the voltage reflection
coefficient by as much as +180°, depending
upon the relative phase changes undergone by
the two traveling waves at the load.

An open-circuited load will, for example,
cause complete reflection of both current and
voltage incident traveling waves. The voltage
and current reflection coefficient magnitude
at the load will both be unity in this case. The
phase angle of the voltage reflection coefficient
at the load will be zero degrees under this
condition, since the same voltage is reflected
(as a wave) back into the waveguide at this
point. However, the current reflection co-
efficient phase angle at the open-circuited
load will be —180° since the incident current
wave amplitude upon arriving at such a load
will suddenly have to drop to zero (there being
no finite value of load impedance) and will
build up again in opposite polarity to be
relaunched as a reflected wave into the wave-
guide.

The collapse of the magnetic field attending
the incident current wave, when it encounters
an open-circuited load, results in an accom-
panying buildup of the electric field and in a
corresponding buildup of voltage at the open-
circuited load to exactly twice the value of
the voltage attending the incident voltage
wave. This is because electromagnetic wave
energy along a uniform waveguide is divided
equally between the magnetic and the electric
fields. The reflected wave voltage builds up
in phase with the incident wave voltage and
the voltage reflection coefficient phase angle
is, accordingly, zero degrees at this point,

1.8 STANDING WAVES

_ At this point in the order of events, the
F load is in the process of engendering standing
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waves along the waveguide, for there suddenly
appears a maximum voltage and a minimum
current at the load terminals, when just prior
to this, the veltage and current at all points
along the line were constant {(except for the
diminishing effects of attenuation). The
modified load voltage now launches back into
the waveguide a rearward-traveling voltage and
current wave in a manner similar to the initial
launching of these waves at the generator end.
These rearward-traveling waves combine with
the respective forward-traveling waves and,
because of their relative phase differences at
various positions along the line (changing phase
angle of voltage and current reflection coeffi-
cients), cause alternate reinforcement and
cancellation of the voltage and current distri-
bution along the line, This phenomenon
results in what has previously been referred
to as standing or stationary waves along the
waveguide. The shape of these standing waves
with position along a waveguide is shown in
Fig. 1.3. It will be seen that their shape is
sinusoidal only in the limiting case of com-
plete reflection from the load, i.e., when the
standing wave ratio of maximum to minimum
is infinity. A graphical representation of the
combination of the two traveling waves is
shown in Fig. 1.4,

Upon arrival back at the generator terminals,
the rearward-traveling voltage wave combines
in amplitude and phase with the voltage being
generated at the time, to produce a change in
the generated voltage amplitude and phase.
At this instant, the generator is first presented
with a change in the waveguide input imped-
ance and readjusts its output accordingly.
This is the beginning in time sequence of a
series of regenerated waves at each end of
the waveguide, which after undergoing multi-
ple reflections therefrom, eventually combine
to produce steady-state conditions and be-
come, in effect, a single forward-traveling and
a single rearward-traveling current and voltage
wave. Thus, in practice, it is not usually
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necessary to consider transient effects of
multiple reflections between generator and
load beyond that of a single reflection at the
load end of the waveguide.

The magnitude and phase angle of the
voltage and current reflection coefficient bear
a direct and inseparable relationship to the
amplitude and position of the attending
standing waves of voltage or current along
the waveguide, as well as to the input im-
pedance (or admittance) at all positions along
the waveguide. Through suitable overlays this
relationship can very simply be described on
the SMITH CHART.

As a specific example of this relationship,
the magnitude of the voltage reflection coeffi-
cient at the open-circuited load previously
considered is unity. Its phase angle is zero

degrees. The accompanying standing voltage
wave has a maximum-to-minimum wave ampli-
tude ratio of infinity. The position of the
maximum point of the voltage standing wave
is at the open-circuited load terminals of the
waveguide, at which point the input impedance
is infinity.

Expressed algebraically, in terms of the
amplitude of the incident i and reflected r
traveling waves, the standing wave ratio §
is seen to be their sum divided by their differ-
ence, i.ce., )

i+r

S = (1-1)

D

and when i—r, 8— ., Also, if the incident
voltage or current wave amplitude is held
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constant at unity (the case of a well-“padded”
oscillator), as the reflected wave amplitude r
changes (accompanying changes in load re-
flections) -

1 +r

S = (1-2)
1-r

Qar

po 821 (1-3)
§+1

The voltage (or current) reflection coeffi-
cient magnitude p is, by definition, simply

ey |y

(1-4)

PROBLEMS

1-1. Assuming constant incident voltage am-
plitude, and using the graphical construc-
tion in Fig. 1.4, plot the spatial shape of
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a voltage standing wave whose ratio § is
3.0, along a uniform, loss-free waveguide.
Plot points at one-sixteenth-wavelength
intervals toward load from a voltage
minimum (current maximum) point.

Solution:

As shown in Fig, 1.5:
1. Draw a horizontal axis (0-2.0) of
some convenient length, and divide into
ten equal parts; label these 0, 0.2, 0.4,
etc., 10 2.0.
2. Draw a circle, in which the above hor-
izontal axis is a diameter, representing
the boundary of a SMITH CHART with-
in which all possible waveguide voltage or
current vectors can be represented.
3. Draw three straight lines intersecting
the center point (1.0) of the horizontal
axis (real axis of the SMITH CHART) at
angles of 45, 90, and 135° from the
horizontal, comesponding to one-
sixteenth-wavelength intervals along a
waveguide. (On the SMITH CHART 360°
corresponds to one-half wavelengths.)
4. Draw a circle centered at 1.0 on the
horizontal axis, representing the locus of
the voltage standing wave vector along
the waveguide, intersecting two values
(1.5 and 0.5) on the horizontal axis,
the ratio § of which will be equal to
3.0. (From Eq. (1-3),if § = 3.0, r=0.5;
andif i =1.0,i+r=135,and i —r=0.5.)
5. Draw voltage vectors from each of the
intersections of this circle (4) with the
respective angle lines (3) to the origin (Q)
on the horizontal axis, and number as
shown in Fig. 1.5, Measure with hori-
zontal axis scale, and tabulate voltage
vector lengths 0- (1), 0 - @, 0 -@ , etc.
to 0 —.
6. Starting at@(the voltage minimum
point of the standing wave) plot the
voltage standing wave on rectangular co-
ordinates from the tabulated amplitudes
at eight equally spaced positions ((1)

through (8)).
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1-2. Plot the corresponding current standing
wave shape.

Solution:

Construct the dashed curve in Fig. 1.5,
exactly duplicating that for the voltage
standing wave except with its null dis-
placed one-quarter wavelength toward
load, representing a 180° phase shift
with respect to the voltage standing
wave.

1-3. (a) What is the magnitude and angle of
the voltage reflection coefficient at the
minimum point (@) of the voltage
standing wave?

Solution:
The ratio of the reflected to the incident

GUIDED WAVE PROPAGATION 9

traveling voltage waves, i.e.,

0.5/180°
PE = _140: = 0.5/180°

(b) What is the magnitude and angle of
the current reflection coefficient at the
same point (maximum point ((3)) of the
current standing wave)?

Solution:
The vector ratio of the reflected to the
incident traveling current waves, i.e.,

0.5 /0°
P = L = 05&

1.0
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In summary, as oriented in Figs. 11.1
through 11.4 with respect to the overlay
Charts A, B, or C, in the cover envelope, the
intersection point of any pair of current
ratio curves gives the impedance at Py, while
the intersection point of any pair of voltage
ratio curves gives the admittance at Pp. When
rotated 180° about their axes with respect to
the coordinates of the overlay charts A, B,
or C, the intersection point of any pair of
current ratio curves gives the admittance at
Py, while the intersection point of any pair
of voltage ratio curves gives the impedance
at Pp.

11.3 CONSTRUCTION OF PROBE RATIO
OVERLAYS

Information is given in Fig. 11.5 for plot-
ting probe ratios which correspond to any
desired probe separation. All such plots
require only straight lihes and circles for
their construction. The outer boundary of
such a construction corresponds to the bound-
ary of the SMITH CHART coordinates.

As shown in Fig. 11.5 the separation of any
two sampling points S/x determines the angle
a as measured from the horizontal R/Z, axis.
This angle establishes the position of a straight
line through the center of the construction
which represents the locus of impedances at
the probe position Py when the current
standing wave ratic is varied from unity to
infinity while the wave is maintained in such
a position along the transmission line with
respect to the position of the two sampling
points that they always read alike, that is,
that Pg/Pg =1.0.

A construction line perpendicular to the
locus Pg/Pg = 1 and passing through the
infinite resistance point on the R/Z, axis will
then lie along the center of all of the P g/PE
circles which it may be desired to plot.

The ratio of each of these circular arcs (R,
and R,) which corresponds to a particular
current ratio, and the distance of their centers
from the chart rim (D, and D,), is given by the
formulas in Fig. 11.5 as a function of the
ratio of P, to Py and the SMITH CHART
radius R.






2.1 FUNDAMENTAL CONSTANTS

wo fundamental waveguide constants, the

characteristic impedance and the propaga-
tion constant, will next be discussed in terms
of traveling voltage and current waves, as well
as in terms of primary circuit elements. The
relationship of these two waveguide constants
to the normalized input impedance character-
istics of a waveguide will be shown. This re-
lationship is the basis for the coordinate
arrangement of the SMITH CHART. Follow-
ing this, the use of the SMITH CHART
coordinates in converting from normalized
impedances to normalized admittances will
be described.

2.2 PRIMARY CIRCUIT ELEMENTS

It is well known that the impedance char-
acteristics of any electrical circuit may be
completely described in terms of four primary

' CHAPTER 2

Waveguide
Electrical
Parameters

circuit elements: resistance R, inductance L,
capacitance C, and conductance G.

Waveguides may be regarded as specific
forms of electrical circuits composed, basically,
of these four primary circuit elements. If the
waveguide is of uniform configuration along
its length the primary circuit elements are
uniformly distributed and, what is equally if
not more important, are always related one to
the other as constant ratios, such as the ratio
L/G, R/G, etc., per unit length of waveguide.
One may develop directly from these primary
circuit elements the two previously mentioned
fundamental waveguide constants by any one
of several methods. The results only will be
given here.

To the same extent that four primary circuit
elements are required and used for analysis of
circuit impedance characteristics, the two
fundamental waveguide constants, character-
istic impedance and propagation constant, are
required and used for analysis of waveguide
impedance characteristics. The importance of

11



12 ELECTRONIC APPLICATIONS OF THE SMITH CHART

these two waveguide constants cannot be over-
emphasized. They provide a means for com-
pletely expressing the impedance character-
istics of any uniform waveguide in relation to
its length and terminating impedance.

Each of the two fundamental waveguide
constants is, in general, a complex quantity
having a real and an imaginary component.
It is possible, and from a graphical point of
view useful, to attach a physical significance
to these constants, as well as to their real and
imaginary parts, as will be seen.

2.3 CHARACTERISTIC IMPEDANCE

The complex characteristic impedance is a
waveguide constant which is equivalent to the
initial input (or surge) impedance encountered
by the forward-traveling electromagnetic wave
along a uniform waveguide., (This was dis-
cussed in Chap. 1.) Stated another way, itis
the ratio of the voltage in the forward-traveling
voltage wave to the current in the forward-
traveling current wave.

Although the characteristic impedance of
a waveguide has the dimensions and some
of the properties of an impedance, it is
important to note that these properties are
not physically equivalent to the impedance
properties of a single-port circuit. For ex-
ample, although it has a real and an imaginary
part, its real part, per se¢, does not dissipate
energy nor does s imaginary part store
Energy.

The characteristic impedance Zy of any
uniform waveguide, in terms of the aforemen-
tioned distributed primary circuit constants,
may be expressed as

R+ ij)l"z
Zy = | 0——
G + joC

where « is 2» times the frequency f in Hz.

(2-1)

At all radio frequencies the resistance R
per unit length of practical waveguides is
generally negligible in comparison with the
inductive reactance jol per this same unit
length of waveguide. Likewise, the con-
ductance G per unit length is negligible
in relation to the capacitive susceptance joC
per unit length, The radio frequency char-
acteristic impedance of a uniform waveguide
is, therefore, frequently expressed by the
simpler relationship

(L)L’z
ZD ~ [ =
C

This latter expression is seen to be independ-
ent of frequency. A small imaginary compo-
nent, which would be contributed to the
characteristic impedance by loss terms, may
generally be neglected in computations in-
volving the impedance characteristics of high-
frequency waveguides. However, if more
accuracy is required, Eq. (2-1) may be ex-
panded to give the following expression for
the high-frequency characteristic impedance
of a waveguide in complex form [50]. This
expression neglects only those terms above the
second powersin R and G:

( R2 3G2 RG )
+ - +
8,22 84,202  4.2LC

(2-3)

(2-2)

Although the characteristic impedance of
any waveguide is definable in terms of its
electrical parameters, its real part can, partic-
ularly in the case of transmission line-type
waveguides, also be expressed in terms of its
physical configuration, and the dimensions of
the conductors of which a given waveguide is



composed. This is seen to be the case since
such physical properties will establish the
primary circuit element values.

Nomographs from which the characteristic

impedance of coaxial and balanced-to-ground
two-wire transmission lines may be obtained
from the physical size and spacing of conduc-
tors are shown in Figs. 2.1 and 2.2, respective-
ly. Similar monographs could, of course, be
drawn for other conductor configurations.
Formulas for less common configurations are
available in handbooks [35].

The characteristic impedance of unicon-
ductor waveguides is not as clearly defined as
that of transmission line-types. Three ap-
proved methods exist for defining the char-
acteristic impedance of lossless rectangular
uniconductor waveguides in which the domi-
nant (TElo) wave is propagated. These
methods yield slightly different results, all of
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which are acceptable if properly used in re-
lation to the electrical parameters from which
they are derived.

The evaluation of a specific characteristic
impedance for a uniconductor waveguide is
further complicated by the fact that it varies
with frequency.

Method | for evaluating the characteristic
impedance ZW'E utilizes the total power W
and the maximum rms voltage E:

E2
Zyg = = (2-4)
WE W

Method 2 utilizes the total power W and the
total current I on a wide face of a rectangular
waveguide in the Jongitudinal direction:

(2-5)

W
Zyr = —
W, 1 2
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Method 3 utilizes the maximum rms volt-
age E and the total current [ on a wide face of
a rectangular waveguide in the longitudinal
direction:

(2-6)

Method 3 yields a value of characteristic im-
pedance which is the geometric mean between
the values obtained by methods 1 and 2.
Although in most engineering applications
it is important to have some knowledge of the
approximate vaiue of the characteristic imped-
ance of the waveguide, in practice the need to
determine accurately the characteristic imped-
ance of a waveguide, particularly that of a
uniconductor waveguide, is frequently avoided
through a process called normalization. This
is a very useful dodge, which makes it possible
to essentially eliminate further consideration
of this constant and to represent the imped-
ance characteristics of all types of waveguides
on a single set of nomalized coordinates on
the SMITH CHART. This will be described in
more detail in the latter part of this chapter.

2.3.1 Characteristic Admittance

The characteristic admittance of any type
of waveguide is the reciprocal of its character-
istic impedance. [t may therefore be used for
normalizing the conductance and susceptance
components of the input admittance of the

waveguide in the same way that the character-.

istic impedance is used for normalizing the
resistance and reactance components.

2.4 PROPAGATION CONSTANT

The propagation constant of a uniform
waveguide is most simply stated as the natural
logarithm of the ratio of the input to the out-

put current in the forward-traveling wave,
where the input and output terminals are
separated by a unit length of the waveguide.

As its name implies, the propagation con-
stant describes the propagation characteristics
of electromagnetic waves which may be prop-
agated along a waveguide. These propagation
characteristics include the attenuation, and
the current and voltage phase relationships.

In general, the propagation constant is a
complex number. The real part, expressed in
nepers per unit length, is called the gtternug-
tion constant. This constant determines the
energy dissipated in the waveguide per unit
length. The imaginary part is called the phase
constant, or the wavelength constant, and is
expressed in radians per unit length.

In terms of the primary circuit elements,
the complex propagation constant P is

P - [(R + jol)G + juO]Y?
a + B

(2-7)

The real and imaginary components of the
propagation constant ¢ and j8 are obtained
by expanding Eq. (2-7) and separating the real
and imaginary parts.

The attenuation constant, in terms of the
primary circuit elements per unit length [35],
is expressed as:

1}"? 1/2
a = (—) JURZ + 2LD(G? + 20D

2
172

+ (RO - &2LO)} (2-8)

The attenuation constant at high frequen-
cies (agp) can be adequately represented by
the simpler relationship

. E 9)1/2 X Q(E)l/z
HF 2\, 2 \¢

(2-9)



When the leakage conductance G can be
neglected, as in the case of a uniconductor
waveguide operating in its dominant mode at
microwave frequencies, the attenuation con-
stant reduces to

(2-10)

The attenuation constant of a high-fre-
quency type of waveguide, such as a two-wire
or a coaxial transmission line composed of
copper or other conductors of known re-
sistivity, may also be expressed as a function
of the conductor dimensions and spacing [10] .

The phase constant 8 determines the wave-
length in the waveguide and the velocity of
propagation. Expressed in terms of the pri-

mary circuit elements per unit length, the

phase constant is

1/2
B = (1) flR2 + w2L2G? + o2C2NY?
2

172
+ @2LC ~ RG)} (2-11)

As the frequency is increased to the point
where losses are small in relation to L and C,
the phase constant expressed in Eqg. (2-11)
can be represented by the simpler relationship

By — o LO'? (2-12)

A wavelength is defined as the length of
line ! such that 8! = 2x. The length of line
corresponding to one wavelength A is, there-
fore, equal to 2+/8, and 8 may be expressed
as

(2-13)
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The propagation constant of a waveguide
continues to vary as the frequency is increased,
and loss terms, which generally increase with
frequency, cannot always be neglected (as was
generally permissible for the loss terms in the
characteristic impedance) if the effect of at-
tenuation on input impedance is to be evalu-
ated.

If losses cannot be neglected, a good approx-
imation for the phase constant 8 may be
obtained by expanding Eq. (2-7) and neglecting
all imaginary terms above the second power,
to give [50]

2
B~ oLOV21 l(i _ _G_) (2-14)
2 \%L  2C

25 PARAMETERS RELATED TO
SMITH CHART COORDINATES

The coordinates of the SMITH CHART
(Fig. 2.3) are basic to its construction. They
comprise a set of normalized input resistance
and reactance, and/or normalized conductance
and susceptance curves of constant values
arranged in a unigque graphical relationship
within a circular boundary. Upon this unique
coordinate system all possible values of com-
plex impedance and/or complex admittance
may be represented. As will be seen, the rela-
tionship of the normalized impedances and
admittances will satisfy the conditions en-
countered along any uniform waveguide.

Other important and useful waveguide pa-
rameters will also be seen to be graphically re-
lated to these basic coordinates as either
peripheral or radial scales, or as asymmetrical
overlays. These other parameters and their
graphical representations on the SMITH
CHART coordinates will be further discussed
in subsequent chapters.
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2.6 WAVEGUIDE INPUT IMPEDANCE

The input impedance of a waveguide is
usually defined as the impedance between
the input terminals with the generator discon-
nected. This is sometimes called the final
sending-end impedance when it is desired to
stress the fact that steady-state conditions
have been established. The input terminals
may be selected at any chosen position along
the waveguide. Thus, a waveguide may be
considered to have an infinite number of
input impedances existing simultaneously,
since there is an infinite number of positions
along any finite length of waveguide.

Waveguide input impedance coordinates are
depicted on the central circular area of the
chart in normalized form, as described in Sec.
2.8 entitled ‘“Normalization.”” These ¢coordi-
nates are arranged to portray the series com-
ponents of the normalized input impedance
with respect to a waveguide, as a function of
the position of cbservation.

The input- or sending-end impedance Z
of any waveguide may be completely expressed
in terms of the two fundamental waveguide
constants Z, and P, the complex load imped-
ance Z , and the length /. The relationship
[2] is as follows:

Z, + Z; tanhP
Z, -2

5

(2-15)

* Z, + Z, tanh P

The input impedance Z_ and load impedance
Z_may be normalized to a common character-
istic impedance Z, by dividing Eq. (2-15) by
Z, to give

Z (Z /Zy) + tanhial + [BD
Lo _ (2-16)
0 1 +(Z /Z,) tanh(al + jBI)

One may simplify this relationship by
eliminating the effect of losses on the input
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impedanéé"'“"'computations {except to the
extent that these losses involve Z;) by simply
setiing « equal to 0. The hyperbolic term
(tanh j81) may then be expressed as its trigono-
metric equivalent (jtanBl, and Eq. (2-16)
reduces to

Z,  (Z/Zy + jtanpl
Zo 1+ j(Z,/Zy) tanfl
(Z,/Zg) + j tan(2al/A)

- (2-17)
1+ J(Z /Zg) tan 2ni/D)

This latter relationship involves only three
variables, viz., the normalized input impedance
Z /Z, the normalized load impedance Z /Z,
and the length /A, expressed as a fractional
part of the wavelength. Two of these variables
(Z,/Zy and Z_/Z,) are complex and each of
these is composed of two other variables, viz.,
the normalized resistance R/Z, and the normal-
ized reactance tjX/Z,. For any fixed load
impedance R./Zy t jX /Zy, one may plot on
any two-variable coordinate system the locus
of magnitudes for the variables R./Z, and
ins/Z0 as /A is varied.

It will be observed that when /A is O, or
any integral number of one-half wavelengths,
the input impedance equals the load imped-
ance. It makes an excursion, controlled by
the tangent function, and returns exactly to
its initial value for every incremental half
wavelength added to 1/A, regardless of its
initial value. An infinite number of two-
variable coordinate systems exists whereupon
one could trace the locus of R/Z, and +jX/Z,,
but at this point it is sufficient to say that
only one such coordinate sysiem exists
whereupon the loci of these variables, as the
length changes, are concentric circles which
close on themselves in one-half wavelength.
These are the coordinates of the SMITH
CHART (Fig. 2.3). The derivation will be
further discussed in later chapters.
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It will be evident from a consideration of
the physics of wave propagation (as discussed
in Chap. 1} that the input impedance of a
waveguide cannot in any degree be changed or
affected by the internal impedance of any
generator which may be connected across the
input terminals of the waveguide. This is so,
even though there may be a serious mismatch
of impedances between the waveguide char-
acteristic impedance and the generator internal
impedance. The generator impedance, there-
fore, does not have to be considered in a
steady-state analysis of waveguide propagation
characteristics, except as it affects the level of
power available from the generator to the
waveguide. This is a rather important point
to bear in mind as it is quite commonly not
fully appreciated.
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The input impedance terminals of a uni-
conductor waveguide, like the terminals of the
primary circuit elements of which the wave-
guide is composed, are somewhat undefinable.
However, the input impedance concept is still
a useful one. Where energy is propagated in
the dominant mode (Fig. 2.4), the accuracy is
sufficient for many engineering evaluations, if
one regards the waveguide terminals as being
located at the centers of the wide interior faces
of the waveguide, between which the voltage
is @ maximum in any given transverse plane.

2.7 WAVEGUIDE INPUT ADMITTANCE

The final input admittance, or simply input
admittance of a waveguide, is the reciprocal of

Dominant mode field pattern in a rectangular uniconductor waveguide.



the input impedance. The coordinate com-
ponent curves of the SMITH CHART (shown
on Fig. 2.3) display both normalized input im-
pedance and normalized input admittance, in
order to broaden its application. As will be
seen, this is possible because of the use of
normalized values to designate the individual
component curves, and because of the way
in which the coordinate component curve
families are labeled. Thus, the real coordinate
component curve family is labeled “Resistance
Component R/Z,, or Conductance Component
G/Y,,” and the imaginary coordinate compo-
nent family is labeled “Inductive Reactance
Component +jX/Z,, or Capacitive Susceptance
Component +jB/Y;,” and “Capacitive Re-
actance Component —jX/ZD, or Inductive Sus-
ceptance Component - jB/Y,.”

The SMITH CHART is most conveniently
used as an admittance chart when the effectsof
shunt elements on the waveguide are to be
considered, and as an impedance chart when
the effects of series elements are to be con-
sidered. One may also transfer the problem
from the admittance coordinates to the im-
pedance coordinates, and vice versa as occasion
demands, when both shunt and series elements
are involved. This is further discussed in
Chap. 6.

2.8 NORMALIZATION

Normalized impedance (with respect to a
waveguide) is defined as the actual impedance
divided by the characteristic impedance of the
waveguide. The input impedance coordinates
on the SMITH CHART (Fig. 2.3} are, as pre-
viously stated, designated in terms of “normal-
ized” values. Normalizing is done to make the
chart applicable to waveguides of any and all
possible values of characteristic impedance. In
addition, as has been pointed out, this makes
the coordinate component curves applicable to
either impedances or admittances.
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To further clarify the normalization process,
consider the specific example of a coaxial
transmission line having a characteristic im-
pedance of 50 + j 0 ohms, terminated in a load
impedance of 75 +; 100 ohms. This particular
load impedance, when normalized with respect
to this particular transmission line character-
istic impedance, would be expressed as 1.5 +
J 2.0 ohms, which would appear on the
SMITH CHART coordinates (Fig. 2.3) at the
intersection of the two families of impedance
component curves, viz., where B/Z, = 1.5 and
+jX/Zy = 2.0, On the other hand, this same
load impedance (75 + j 100 ohms), when
normalized with respect to the characteristic
impedance of a two-wire transmission line of,
say, 500 ohms, would be expressed as 0.15 +
j 0.20 ohms. This would appear on the chart
impedance coordinates at a different position,
viz,, at the intersection of the impedance
component curves where R/Z, = 0.15 and
+jX/Zy = 0.20. The same chart is thus seen to
be applicable to transmission lines of different
characteristic impedances.

The characteristic impedance of 50 ohms is
equivalent to a characteristic admittance of
1/50 or 0.020 mho, and a load impedance of
75 +j 100 ohms is equivalent to a load admit-
tance of

- or 0.0048 - j0.0064 mho
75 + j100

Normalized load admittance for this assumed
transmission line is then, by definition,

0.0048 -~ j0.0064
m

ho or (.24 —~ j0.32 mho
0.020

which, as previously stated, is the reciprocal of
the normalized complex load impedance, viz.,
1.5+ 2.0 ohms.
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2.9 CONVERSION OF IMPEDANCE
TO ADMITTANCE

The conversion from impedance to admit-
tance, or vice versa, is readily accomplished on
the SMITH CHART by simply moving from an
initial impedance point on the normalized
impedance coordinates of the chart to a point
diametrically opposite and at equal distance
from the center of the chart, Equivalent ad-
mittance values are then read on the normal-

ized admittance coordinates. Any two such
diametrically opposite points at the same chart
radius give reciprocal normalized values of the
coordinate components and, thereby, convert
normalized impedances directly to normalized
admittances and vice versa. Thus, in the
example given for the normalization of im-
pedance and admittance, the respective co-
ordinate points, viz., 1.5 + j 2.0 and 0.24 -
j 0.32, will be seen to lie diametrically
opposite each other at equal distance from
the center of the chart in Fig. 2.3.



3.1 CONSTRUCTION OF COORDINATES

his chapter describes the construction of

the basic coordinates of the SMITH CHART
(Fig. 2.3)and then discusses some of the more
important waveguide electrical parameters re-
lated thereto. All of these related parameters
may be graphically portrayed as either radial
or peripheral scales.

The construction of the basic series im-
pedance or parallel admittance coordinates of
the SMITH CHART is shown in Figs. 3.1 and
3.2. Figure 3.1 applies to the normalized re-
sistance circles R/Z,, while Fig. 3.2 applies to
the superimposed normalized reactance circles
tjX/Z,. The same construction is applicable
to the basic admittance coordinates, by sub-
stituting G/Y, for R/Z, in Fig. 3.1, and by
substituting +jB/Y, for +jX/Z, (and -jB/Y,
for-jX/Z,) in Fig. 3.2.

Construction

3.2 PERIPHERAL SCALES

The impedance or admittance coordinates
of the SMITH CHART would be of little use
were it not for the accompanying related pe-
ripheral and radial scales which have general
application to waveguide propagation prob-
lems, and which serve as the entry and exit to
the chart coordinates. Peripheral scales gener-
ally have to do with chart coordinate quantities
which vary with position along the waveguide,
while radial scales have to do with chart coordi-
nate quantities which vary with reflection and
attenuation characteristics of the waveguide.

Two important linear peripheral scales are
shown on the SMITH CHART in Fig. 3.3. The
outermost of these is the electrical length
scale, the other is the phase angle of the volt-
age reflection coefficient scale. A nonlinear
peripheral scale showing the angle of the

21
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voltage transmission coefficient is described
in Chap, 8.

3.2.1 Electrical Length

It was stated in Chap. 2 that the phase
constant 8 of a waveguide determines the
wavelength in the waveguide and the velocity
of propagation. The velocity of propagation,
as therein stated, more accurately refers to
the velocity of phase propagation, or simply
the wave velocity. The electrical length is
derived from considerations of phase velocity
and wavelength.

As is also stated in Chap. 2, a wavelength
is definred as the length of waveguide 7 such
that 8! = 2r. The length of waveguide cor-
tesponding 1o one wavelength A is, therefore,
defined as

%

B8

A (3-1)

In the case of waveguides along which energy
is propagated in the TEM mode (which ex-
cludes uniconductor waveguides), the wave-
length X, in meters, will be

v

A - (3-2)
f

where { is the frequency in Hz, and v is the
velocity of phase propagation in the waveguide
in m/sec. For such waveguides, which include
coaxial and open-wire transmission lines with
air insulation, v is generally very close to
300,000,000 m /sec.

Linear length scales around the periphery of
the SMITH CHART (Fig. 3.3) indicate values
of electrical length of waveguide or transmis-
sion line, in wavelengths. Two scales are used
to indicate distances in either direction from
any selected point of entry of the chart, such
as a point corresponding to the nodal point

of a voltage standing wave, or the input termi-
nals, or load terminals of the waveguide. These
scales relate the position along the waveguide
to the input impedances {or admittances)
encountered at these points as read on the
normalized input impedance (or admittance)
coordinates. These two scales are labeled,
respectively, “Wavelengths Toward Generator”
and ‘““Wavelengths Toward Load.” For con-
venience, the zero points are oriented (Fig.
3.3) so that they are always aligned with a
voltage standing wave minimum point. If a
measurement of distance is to be made from
some reference point other than a voltage
minimum position, the scale value as read
radially in line therewith must be interpolated
and subtracted from subsequent scale value
readings, since these length scales are not
physically rotatable with respect to the co-
ordinates on a single sheet of paper.

The length scales on the periphery of the
SMITH CHART encompass only one-half
wavelength (180 electrical degrees) of wave-
guide and this corresponds to a physical rota-
tion of 360° in either direction around the
chart periphery. However, a graphical repre-
sentation of the conditions along one-half
wavelength of waveguide is all that it is neces-
sary to consider, since the input impedance
values along any uniform waveguide or trans-
mission line repeat cyclically at precisely this
interval of distance, if one ignores the effect of
attenuation, which effect may be taken into
account in a manner to be described later.
Any waveguide electrical length in excess of
one-half wavelength may always be reduced to
an equivalent length less than one-half wave-
length, to bring it within the scale range of the
chart, by subtracting the largest possible
integral number of half wavelengths,

The electrical length of a uniform loss-less
section of high-frequency open wire, or co-
axial transmission line, having predominantly
a gas dielectric, is only slightly longer than its
physical length when the latter is expressed in



terms of the wavelength in free space. How-
ever, the electrical length of practical low-loss
coaxial transmission line with a solid dielectric
insulating medium, such as polyethylene, is
materially increased from its electrical length,
in the absence of solid insulation, due to the
slower velocity of propagation of electromag-
netic waves in dielectric media, by a factor
which is equivalent to the refractive index of
the dielectric medium between condugtors, or
by the factor ¢, where ¢ is the dielectric
constant of the medium.

For uniconductor waveguides, the electrical
length is expressed with reference to waveguide
wavelength, which, in turn, depends upon the
mode of propagation of the energy (field
pattern) within the waveguide as well as the
specific dimensions and configuration of the
waveguide. For all hollow uniconductor
waveguides, in¢cluding those of rectangular or
circular cross section. the waveguide wave-
length is longer than the free space wavelength.
Thus, a given section of rectangular or circular
uniconductor waveguide is electrically shorter
than its physical length.

The waveguide wavelength is directly meas-
urable in uniconductor waveguides or trans-
mission lines when standing waves are present.
It is equal to twice the distance between adja-
cent voltage or current nodal points. In
uniconductor waveguides the waveguide wave-
length is also calculable from the physical
dimensions of the waveguide at the frequency
of interest [10].

3.2.2 Reflection Coefficient Phase Angle

The phase angle of the voltage reflection
coefficient was described briefly under the
heading “Reflection”™ in Chap. 1. This changes
linearly with distance along a waveguide as
does the absolute phase of the traveling wave.
However, the former changes twice as rapidly
with position as does the latter because of the
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fact that the reflected wave, which is the
reference for the reflection coefficient (rather
than a fixed point along the waveguide) has
traveled twice as far as the incident wave in
any given length of waveguide.

The phase angle of the voltage reflection
coefficient is portrayed on the SMITH CHART
(Fig. 3.3) as a linear peripheral scale ranging in
value from O, along the resistance axis in the
direction of maximum resistances, to 180°
along this same axis in the opposite direction.
Progressing clockwise from the zero-degree
point on the voltage reflection coefficient
phase angle scale, which is the direction in
which one moves on the chart when moving
toward the generator, the voltage reflection
coefficient phase angle increases negatively
from O to -180°, indicating an increasing lag
in the reflected voltage wave as compared to
the incident wave. The reverse is, of course,
true in the opposite direction.

3.3 RADIAL REFLECTION SCALES

The radial scales to be described in this
chapter apply to all angular positions on the
basic coordinates of the SMITH CHART.
These are, therefore, equivalent to families of
coaxial overlays, since the radial scales could
be graphically represented as concentric ¢ircles
about the center of the SMITH CHART. Each
circle of each family of concentric c¢ircles
could then be assigned a specific value corre-
sponding to the value of the radially scaled
parameter which it represented. However, if
this were done the resulting large number of
concentric ¢ircles would mask the basic chart
coordinates and result in confusion. Radial
scales avoid this.

Figure 3.4 is a plot of four radial reflection
scales which will be discussed in this chapter.
These include (1) the voltage reflection coef-
ficient magnitude, (2) the power reflection
coefficient, (3) the voltage standing wave
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ratio, and (4) the voltage standing wave ratio
in dB. They are applicable to the coordinates
of Fig. 2.3.

3.3.1 Voltage Reflection Coefficient

Magnitude

Although one may correctly refer to the
reflection coefficient in any transmission medi-
um as the ratio of a chosen quantity associated
with the reflected wave to the corresponding
quantity in the incident wave, the usual
quantity referred to, for an electromagnetic
wave along a waveguide, is voltage. The volt-
age (and current) reflection coefficient was
discussed in Chap. 1 in the section on “Wave-
guide Operation.” The voltage reflection
coefficient is defined as the complex ratio
of the voltage of the reflected wave to that of
the incident wave.

On the SMITH CHART, the magnitude of
the voltage reflection coefficient is represented
as aradial scale, starting with zero at the center
and progressing linearly to unity at the outer
boundary circle (see Fig. 3.4). Since this
scale is linear it is a convenient mathematical
reference for equating all radial scale param-
eters.

If the waveguide is uniform and lossless,
the voltage reflection coefficient is constant
in magnitude throughout its length. If, on

the other hand, the waveguide has attenuation,
the voltage reflection coefficient will be maxi-
mum at the load end and will diminish with
distance towards the generator in accordance
with the attenuation characteristics of the
waveguide.
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Fig. 3.4. Radial reflection scales for SMITH CHART coordinates in Fig.

2.3 {see radial loss scales in Fig. 4.1).

Figure 3.5 shows a family of constant mag-
nitude circles and a superimposed family of
constant phase lines (radial) graphically de-
picting the voltage reflection coefficient mag-
nitude and phase angle, respectively, along a
uniform waveguide.

The polar coordinates formed by these two
families of circles may be superimposed on
the basic SMITH CHART coordinates (Fig.
2.3, or Chart A, B, or C in the cover envelope)
to obtain the relationship of the complex re-
flection coefficient at any point along a wave-
guide to the complex impedance or admit-
tance.

3.3.2 Power Reflection Coefficient

The power reflection coefficient is defined
simply as the ratio of the reflected to the
incident power in the waveguide. Numerically
it is equivalent to the square of the voltage
reflection coefficient. However, unlike the
voltage reflection coefficient, the power re-
flection coefficient has magnitude only, since
“phase” as applied to power is meaningless.
Like the voltage reflection coefficient, the
power reflection ceefficient is constant
throughout the length of a uniform lossless
waveguide, but in a waveguide with attenua-
tion it diminishes with distance toward the
generator from a maximum value at the load
end.

The power reflection coefficient, expressed
in dB, is called refurn loss. This will be dis-
cussed further in the next chapter.

3.3.3 Standing Wave Amplitude Ratio

The standing wave amplitude ratio of maxi-
mum to minimum voltage along the waveguide
(symbolized as VSWR ) is a measure, indirectly,
of the degree of mismatch of the waveguide
characteristic impedance and load imped-
ance. Limiting values are unity for a matched
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waveguide and infinity for a lossless open
{or short-circuited) waveguide.

As discussed in the section on “Waveguide
Operation™ in Chap. 1, a standing (or sta-
tionary) wave may be thought of as the
resultant of two traveling waves moving in
opposite directions along the waveguide, i.e.,
the incident {or direct) and the reflected
waves. A single reflection from the load
only need be considered under steady-state
conditions, since multiple load reflections due
to several round trips of the wave between
the load and the generator can, under steady-
state conditions, be considered to add up to a
single effective load reflection. Multiple
generator reflections likewise can be con-
sidered to add up to a single effective gen-
erator output.

Standing waves are always accompanied by
a change in input impedance as a function of
the position of observation along the wave-
guide which would otherwise be constant and
equal to the characteristic impedance. If the
waveguide is lossless the locus of input im-
pedances, for a given standing wave ratio, is
represented on the SMITH CHART as a circle
concentric to the center of the chart. The
radius of the circle is a function of the stand-
ing wave ratio and consequently the standing
wave ratio may be represented as a radial
scale on the chart. This scale is shown in
Fig. 3.4. Individual points on an impedance
circle give the input impedance of the wave-
guide at corresponding individual positions.

It will be shown by reference to Eqs. (A-11)
and (A-12}in Appendix A that the voltage and
current wave shapes are identicai along a loss-
less waveguide, for the sending-end voltage E s
and current I as a function of the length i,
namely,

E, - E, cospl + jZyl, sinfBl (3-3)

and

E

I, =1 cosBl +j— sinfl (3-4)
Zy

where

E_ = receiving-end voltage

I. = receiving-end current
characteristic impedance

N
=1
1

For comparative purposes E_ and Z; can be
considered to be a constant equal to unity, in
which case

E, = cosfl + JI, sin ! (3-5)
and
I, = I, cosBl + jsingl (3-6)

Considering the current I, at a point one-
quarter wavelength removed from the voltage
E,, that is, /2 radians,

I, = I cos (ﬁz + f"_) + j sin (;9; + E) (3-7)
2 2

but

cos (BE * ”) = Fsinp!

and

sin (Bl + g) = Feosfl
Therefore

I, = ¥1_sinfl 7 j cos Bi

= Fjlcos Bl + jI_sinBD (3-8)

A comparison of Eq. (3-8) with Eq. (3-5) shows
that E_ and I, have the same shape and




amplitude for unit E_ and that they are dis-
placed 90°, or one-quarter wavelength. The
curren{ minimum point always occurs coinci-
dent in position with the voltage maximum
point along the waveguide and vice versa.

The position of a voltage standing wave
minimum point along a waveguide always
coincides with the position of minimum
normalized input impedance (or maximum
normalized input admittance), whereas the
position of a minimum current coincides with
the position of maximum normalized input
impedance (or minimum normalized input
admittance). Except in the case of highly
dissipative waveguides the input impedance
(or admittance) is a pure resistance (or con-
ductance) at both of these points. At all
other points the input impedance (or admit-
tance) is complex,

X
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The shape of the voltage and current
standing waves along a waveguide are plotted
in Fig. 3.6 for standing waves of several
amplitude ratios. On this plot each wave is
transmitting the same power to the load. If
the waveguide is lossless, the voltage at the
maximum point of a standing wave whose
ratio is infinity is also infinity. The wave-
guide would, of course, arc over long before
this point could ever be reached.

A plot similar to that in Fig. 3.6 was shown
in Fig. 1.3, wherein the relative amplitudes
and shapes of several standing waves were
plotted for the condition where the same inci-
dent voltage is applied to the waveguide.
Under these latter conditions, which prevail
when the generator is decoupled from the
waveguide with sufficient attenuation, it was
shown that the voltage at the maximum point
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of a standing wave, whose ratio is infinity, is
exactly twice the incident voltage.

It will be observed from the curves in
Figs. 1.3 and 3.6 that the shape of a standing
wave is different for each standing wave ratio
and that although traveling waves are sinusoi-
dal in shape when observed as a function of
time, standing waves are not sinusoidal in
shape when their amplitude is plotted as a
function of position along the waveguide,
except in the limiting case when the standing
wave amplitude ratio is infinite. When the
standing wave ratio approaches unity the wave
shape approaches that of a sine wave of twice
the frequency, becoming finally a straight
line when the standing wave ratio reaches the
unity value. When the standing wave ratio
approaches infinity the wave shape approaches
that of a succession of half sine waves.

The standing wave shape in a short length,
such as omne-quarter wavelength, of high-
frequency waveguide is unaffected to any
appreciable extent by attenuation (one-way
transmission loss), although this may be suffi-
cient to affect the standing wave amplitude
ratio.

The standing wave amplitude and wave
position are readily measurable waveguide
parameters using slotted sections of wave-
guide. This data is useful in providing an
entry to the SMITH CHART. Like the input
impedance, the standing wave ratio or position
in a waveguide cannot be affected by the
internal impedance of the generator. How-
ever, caution should be exercised to ensure
that the conductance and susceptance of any
measuring probe used to sample VSWR will
not, as it moves along the waveguide, change
the impedance presented to the generator,
thereby changing the input power or fre-
quency and causing what appears to be a
distortion of the standing wave shape or ratio.

It may be of interest to note that amplitude
values for the voltage standing wave ratio
(VSWR), as scaled radially on the SMITH
CHART coordinates, are exactly the same as

amplitude values of the circles of constant
normalized resistance {or normalized conduct-
ance) at the points where these cross the
R/Z, (or G/Y,) axis. This may be seen by
comparing the VSWR scale in Fig. 3.3 with
the R/Z, coordinate labeling.

The voltage reflection coefficient magni-
tude p and phase at a point along a waveguide
are uniquely related to the voltage (or current)
standing wave amplitude ratio § and standing
wave position. A simple amplitude relation-
ship exists between these parameters, namely,

(3-9)

The position of the voltage standing wave
maximum peint on a waveguide always corre-
sponds to the position where the phase angle
of the voltage reflection coefficient is zero.
The adjacent voltage standing wave minimum
position on the waveguide one-quarter wave-
length (90 electrical degrees) removed from
the maximum point on either side always cor-
responds to the position where the voltage
reflection coefficient phase angle is 180°.

3.3.4 Voltage Standing Wave Ratio, dB

By definition the decibel is fundamentally
a power ratio:

Pl
dB = 10 log;; —
P

2

(3-10)

An extension of this use came into being soon
after introduction [4] of the unit in 1929,
namely,

vy
dB = 20 log,;, —
V2

(3-11)

It was correctly stated that if two voltages are
impressed across the same resistance the square
of their ratio will be equivalent to the ratio of
powers in the resistance.



Later, it became popular to measure stand-
ing waves of voltage along a waveguide with a
voltmeter calibrated in dB in accordance with
Eq.(3-11) and to define the VSWR in “dB™ as

Vv
dBS - 20 log,, V’““ (3-12)

min

This is obviously a misuse of the term dB as
originally intended, since the maximum and

SMITH CHART CONSTRUCTION K]

minimum voltages in the standing wave do
not exist across the same input resistance. To
further perpetuate this misuse of the term,
manufacturers quite generally calibrate stand-
ing wave indicating devices in dB.

Since standing wave ratios are, today, so
frequently measured in dB it seems advisable
to recognize this special use of the term. Ac-
cordingly, the lowest scale in Fig. 3.4 shows
the VSWR scale in dB.






4,1 RADIAL LOSS SCALES

In Chap. 3 it was shown that entry and exit
to the coordinates of the SMITH CHART are
conveniently accomplished through the use of
appropriately graduated peripheral and radial
scales. The peripheral scales {which were de-
scribed in Chap. 3) relate all angular positions
on the chart coordinates, as measured from
its center, to corresponding physical positions
along a waveguide. These scales include two
linear length scales, one progressing clockwise
and the other counterclockwise, from zero to
one-half wavelength around the chart circum-
ference. A third peripheral scale measures the
phase angle of the voltage reflection coeffi-
cient in relation to chart coordinates. Each
point along each of the three peripheral scales
was shown to apply to all chart positions radi-
ally in line therewith.

Radial scales on the SMITH CHART (de-
scribed in Chap. 3) were shown to be related

CHAPTER 4

Losses, and
Voltage-Current
Representations

to the magnitude of reflections from the load,
or from discrete reflection points along the
waveguide. These scales include voltage (and
power) reflection coefficient magnitude and
voltage (or current) standing wave ratio. A
simple relationship between the magnitude of
the voltage reflection coefficient and the volt-
age standing wave ratio was given.

It will now be shown that the effect of both
dissipative and nondissipative losses encoun-
tered in a waveguide may also be represented
on the SMITH CHART by appropriately
graduated radial scales. Dissipative losses
which will be considered include transmission
loss (two-way attenuation} and standing wave
loss facror (transmission loss coefficient).
Nondissipative losses include reflection loss
and return loss.

A universal voltage-current overlay for the
SMITH CHART impedance (and/or admit-
tance) coordinates is described in the latter
part of this chapter.

a3
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4.1.1 Transmission Loss

Transmission loss is defined as the power
loss in transmission between two points along
a waveguide. It is measured as the difference
between the net power passing the first point
and the net power passing the second. Thus,
by definition, transmission loss includes dis-
sipative losses incurred in the reflected, as well
as in the forward-traveling wave, and it also
includes losses due to radiation of electro-
magnetic energy from the waveguide. Trans-
mission loss excludes nondissipative losses due
to impedance mismatches, which will be dis-
cussed later. Alternatively, transmission loss
may be defined as the ratio (in dB) of the net
power passing the first point to the net power
passing the second.

Transmission loss in waveguides is of three
basic types, namely, conductor losses, di-
electric losses, and radiation losses. The first
two types result in power dissipation or ieat
loss in the waveguide. Except in open-wire
transmission lines, radiation losses are generally
small enough to be neglected [5]. Conductor
losses in waveguides result from the flow of
currents in the conductor resistance, whereas
dielectric losses are due to the flow of con-
duction current in the dielectric conductance.

At high frequencies conductor resistance
losses in waveguides wherein TEM waves are
propagated (which includes coaxial and open-
wire transmission lines) increase as the square
root of the frequency due to skin effect [10].
Dielectric conductance losses, on the other
hand, are directly proportional to the number

dielectric medium adjacent to the conductors
in a given interval of time since for a given
voltage the dielectric absorbs a fixed amount
of energy each cycle. Consequently, these
losses increase linearly with frequency. These
two types of loss are essentially independent
and additive, so that in this type of waveguide,
the total heat loss increases with frequency at
a rate which is between the square root and
the first power, depending upon the materials
of which the waveguide is constructed and
the frequency of aperation.

In cylindrical uniconductor waveguides, in
which the dielectric adjacent to the con-
ductor is entirely air or gas and in which
waves are propagated in the dominant mode
(for example, TE,, waves), losses are related
to frequency in a much more complicated
manner. Below the cutoff frequency (lowest
transmittable frequency), losses approach in-
finity. Immediately above the cutoff fre-
quency, transmission losses decrease with in-
creased frequency at a much higher rate than
the concurrent increase in conductor resist-
ance resulting from skin effect.

The radial scale labeled “‘transmission loss”™
in Fig. 4.1 actually refers to one-way trans-
mission loss (attenuation). One-way trans-
missicn loss is the loss in a conjugate-match
terminated waveguide, and is the minimum
possible dissipative loss. It is this one-way
transmission loss, only, which must be con-
sidered in the determination of the effect of
all dissipative losses upon input impedance.

The one-way transmission loss scale is
plotted, for use on the SMITH CHART co-

of alternations of the electric field in the ordinates, in dB units. Specific values are

purposely omitted so that the zero-dB point
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Fig. 4.1.  Radial loss scales for SMITH CHART coordinates in Fig. 2.3
{see radial reflection scales in Fig. 3.4).
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scale, with its consequent effect upon the in-
put impedance (or admittance) coordinates.
The proper direction to proceed along the
one-way transmission loss scale depends upon
whether one moves along the waveguide
“toward generator” or “toward load.”

For example, if one enters the SMITH
CHART at a point corresponding to a known
load impedance point and then moves “toward
generator” for an observation of input imped-
ance, the one-way transmission loss will de-
crease the radial distance from the center of
the chart at which the input impedance is
indicated on the basis of length moved. The
scale of one-way transmission loss “Trans-
mission Loss—1 dB steps™ is labeled to show
the direction in which it is effective in relation
to the direction which the observer moves
from the point of entry on the chart.

The one-way transmission loss scale for the
SMITH CHART is most easily derived from a
consideration of the magnitude of the power
reflection coefficient. As discussed in Chap.
3, the power reflection coefficient is the ratio
of reflected to incident wave power at any
selected reference point along a waveguide.
It is numerically equal to the square of the
voltage reflection coefficient p at that point.
The power reflection coefficient may be rep-
resented on SMITH CHART coordinates by
an overlay of concentric circles (similar to
those shown on the voltage reflection coef-
ficient overlay in Fig. 3.5) whose radii vary
from zero at the center to unity at the rim
of the overlay. The radius of individual circles
in this family is given in Fig. 3.4,

At any selected point of entry on this power
reflection coefficient overlay, and conse-
quently on the SMITH CHART ccordinates,
forward-traveling wave energy may be assumed
to exist. This will be attenuated by the
one-way transmission loss as the power
flows toward the termination. The termi-
nation may conveniently be taken to be at
any point on the outer rim of the power

reflection coefficient overlay {(or SMITH
CHART) corresponding to 100 percent re-
flection. As explained in Chap. 1, the
forward-traveling wave energy encounters only
the characteristic impedance of the waveguide
after leaving the initial point of entry. Upon
arrival at the above termination the wave
energy is completely reflected. The reflected
wave energy continues to encounter the
characteristic impedance of the waveguide.
Since the propagation path is common to
both the forward and the reflected wave
energy, the latter, in its backward path to the
initial point of entry, will be attenuated in
the same ratio as was the incident wave
energy. At the initial point of entry the power
reflection coefficient is, thus, a measure of
the two-way transmission loss, expressed as a
power ratio. One-half of this, therefore,
represents the one-way transmission loss, viz.,

dB = %(-10 logyq p™) (4-1)
or
dB - -10 log,op (4-2)

If the terminating impedance is other than one
which produces complete reflection in a wave-
guide, such as an open- or short-circuit, or a
pure reactance (or susceptance), the one-way
transmission loss in the waveguide between
any two sampling points where the voltage
reflection coefficient is, respectively, g; and

pz, iS

Since only dB units are plotted on the one-way
transmission loss scale, it will always be neces-
sary to interpolate between scale divisions for
points of entry and exit on the SMITH CHART
coordinates which do not fall exactly at the
scale division points.
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4.1.2 Standing Wave Loss Factor

As previously discussed, additional dissipa-
tive losses occur in waveguides when there is
reflection from the load, over the one-way
transmission loss incurred when there are no
reflections, even though the generator imped-
ance may be conjugate-matched to the input
impedance of the waveguide. This increased
dissipative loss (heat loss) is incurred by the
reflected power from the load. Reflected
power results in reflected voltage and current
waves, resulting in standing waves of voltage
and current.

If a waveguide is one or more wavelengths
long, the average increase in dissipative loss
due to standing waves in a region extending
plus or minus one-half wavelength from the
point of observation may be expressed as a
coefficient or factor of the one-way trans-
mission loss per unit length.

The standing wave loss factor can be de-
rived from a consideration of the amplitude
and shape of the standing waves along a wave-
guide. The existence of a standing-wave loss
factor and the fact that its amplitude will
vary with the degree of mismatch of the load,
and/or the standing wave ratio, is apparent
from Fig. 3.6. This figure, as previously in-
dicated, shows the relative amplitudes and
shapes of several standing waves of current or
voltage, all of which will transmit the same
net power to the load along a lossless wave-
guide. For any given standing wave pattern
the conductor losses vary along the waveguide
in proportion to the square of the current at
successive points. Since a uniform waveguide
has uniform resistance there are always in-
creased conductor losses in the region of cur-
rent maxima points which more than counter-
act the reduction in conductor loss in the
region of adjacent current minima points.
(Note that the area between the current
maxima loops and unity is greater than the
area between the current minima loops and
unity.)

Also, since dielectric losses are proportional
to the square of the voltage and since the
dielectric conductance is uniformly distrib-
uted, there are always increased dielectric
conductance losses (if the waveguide has any
dielectric conductance losses to start with)
in the region of voltage maxima points. This
more than compensates for the reduction in
dielectric loss in the region of adjacent voltage
minima points.

The dielectric conductance loss at any given
point along a waveguide is, as previously stated,
proportional to the square of the voltage at
the point, while conductor loss is proportional
to the square of the current. Since the
standing voltage and current wave shapes are
identical, it is evident that the percentage
increased losses from these two causes are the
same. For this reason a single transmission
loss coefficient scale may be used to repre-
sent added percentage loss as a function only
of the standing wave ratio. This will hold
whether the losses are initially composed of
conductor loss, dielectric loss, or any pro-
portion of each. The standing wave loss
factor is represented as a single radial scale
on Fig. 4.1, under the caption “Transmission
Loss~Loss Coef.”

The added loss, which may be evaluated
from the standing wave loss factor, does not
enter into the calculation of the input imped-
ance vharactenstic of the waveguide, and con-
sequen:ly when the unattenuated input imped-
ance value on the SMITH CHART is being
corrected to take losses into account, this
factor should not be considered.

Expressed in terms of the standing wave
ratio §, the standing wave loss factor (trans-
mission loss coefficient) is

mismatched _ 1 + 52
matched 25

LLoss ratio, (4-4)

This coefficient provides the means for
determining the smoothed distribution of the
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transmission loss (total dissipation losses) in a
waveguide when standing waves are present.
Smoothing is accomplished by integrating the
losses over plus or minus one-half wave-
lengths from the peoint of observation, then
averaging the results over the same length and,
finally, expressing the increase over the mini-
muimn attenuation on the basis of an equivalent
increase in an elemental length at the point.
Thus, spatially repetitive variations in trans-
mission loss within each successive half
standing wavelength are equated to an equiv-
alent smoothed loss by the standing wave
loss coefficient.

The standing wave loss coefficient scale can
also be used to obtain, to a close approxi-
mation, the ratio of transmission loss to
attenuation for an entire waveguide length in
which the standing wave ratio changes along
its length due to attenuation. For this the
scale value is simply observed at a point mid-
way between the values which represent con-
ditions at the end points of the waveguide
section. For example, in a waveguide in which
the standing wave ratio is 3.0 at the load end
and 1.5 at the generator end, the standing
wave loss coefficient is, respectively (from
Figs. 3.4 and 4.1, or from Fig. 14.9), 1.667
and 1.083. A point on this scale positioned
midway between these two scale positions (not
scale values) indicates an average loss increase
for the entire length of waveguide to be
1.28 times the attenuation or 1.07 dB (10
log,, 1.28 = 1.07 dB). This compares,
within the limits of ability to read the scales,
with the exact value indicated by the differ-
ences in the reflection losses at the same two
positions, viz., 1.25 dB - 0.18 dB = 1.07 dB.
The maximum variation of loss within a
standing wavelength, from the attenuation
per unit length, falls between the limits of S
and 1/S where S is the standing wave ratio.
It reaches these peak values only when the
loss is due entirely to either conductor or
dielectric loss and when radiation losses are
absent.

The dissipative loss per unit length of
waveguide due to conductor resistance is
proportional to the square of the current at
the point, whereas the diclectric loss per unit
length of waveguide is proportional to the
square of the voltage. Since both conductor
resistance and dielectric conductance are
evenly distributed in a uniform waveguide,
when standing waves are present these two
sources of loss reach peak values one-quarter
wavelength apart. Their combined effect at
any position along the standing waves can
be evaluated by simiply adding them at that
position as illustrated in Prob. 4-1,

4.1.3 Reflection Loss

In a lossless waveguide transmission system,
if a matched impedance condition is assumed
between a generator and waveguide character-
istic impedance, and between the waveguide
characteristic impedance and the load, there
will be no reflected power in the waveguide
and consequently no reflection loss. If the
load impedance only is then changed, so that
a mismatch between the waveguide character-
istic impedance and load occurs, there will be
a reduction of power delivered to the load.
The reduction in load power as the load
impedance is changed is a measure of the
reflection loss. This may be expressed as a
ratio of the reflected to the absorbed power.

In terms of the voltage reflection coeffi-
cient, the reflection loss in dB is:

Refl. Loss, dB = -10 logy4 (1 - p2) (4-5)

Under the mismatched load condition the
generator will deliver less power to the wave-
guide. The reduction of power introduced to
the waveguide at the generator end is the same
as the reflection loss at the load. In other
words, the reflection loss at the load can be
referred back along the waveguide to the
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generator terminals and it will have a constant
value at all positions which is independent of
the waveguide length.

Reflection loss is a nondissipative type of
loss representing only the unavailability of
power to the load due to the mismatch of
impedances originating, in this case, between
the waveguide and load. If a lossless trans-
former is inserted at any point in the trans-
mission system between the load and generator
to provide a conjugate match of the imped-
ances, as seen in ejther direction at the point
of its insertion, then the reflection loss may
be canceled by a negative reflection loss
(sometimes called reflection gain) introduced
by the transformer.

If the waveguide is not lossless, under the
above mismatched conditions at the load, the
reflection loss will decrease from its initial
value at the load to something less than this
value at the generator end of the waveguide.
The difference between these two values of
reflection loss, as may be read on the radial
reflection loss scale for the SMITH CHART
on Fig. 4.1, will correspond exactly to the
increased dissipation in the waveguide due to
the reflection of power from the load.

4.1.4 Return Loss

Return loss is a nondissipative loss term
frequently used to describe the degree of
mismatch of a load which is closely matched
to the characteristic impedance (or character-
istic admittance) of a waveguide and which,
therefore, produces a small reflection coef-
ficient or standing wave ratio.

Return loss is a measure of the ratio, in dB,
of the power in the incident and reflected
waves, 1.e.,

Return loss, dB = 10 loglo p2 (4-6)

In other words, return loss is the power
reflection coefficient expressed in dB. Thus,

a waveguide which is nearly match-terminated
will have a relatively large return loss, whereas
one which is badly mismatched will have a
small return loss.

Return loss is a term which is frequently
used when working with waveguide directional
couplers whose output ports contain sample
portions of the incident and reflected power
in the main waveguide.

Return loss is plotted as a radiai scale for
the SMITH CHART coordinates, ranging be-
tween zero dB at the outer rim and infinite
dB at the center of the chart. This scale is
shown in Fig,. 4.1.

4.2 CURRENT AND VOLTAGE
OVERLAYS

For a given transmitted power, the input
impedance locus on the SMITH CHART re-
sulting in constant current magnitude coin-
cides with the locus of constant series resist-
ance. Similarly, the complex admittance
locus resulting in a given voltage magnitude
coincides with the locus of constant con-
ductance. The constant current and con-
stant voltage loci are thus represented by two
separate families of circles, all of which are
centered on the resistance (andfor conduct-
ance} axis of an overlay chart for the SMITH
CHART in Fig. 3.3. As shown in Fig. 4.2,
the constant voltage circles are an exact
image of the constant current circles as re-
flected in a vertical plane passing through the
center of the overlay chart.

Corresponding current and voltage curves
in Fig. 4.2 in each of the two families have
the same magnitude since they are “normal-
ized” to correspond to the current and volt-
age in a waveguide having a characteristic
impedance of one ohm (or a characteris-
tic admittance of one mho), when transmitting
one watt of power. The actual voltage is
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Fig. 4.2.  Normalized voltage or current at any point along a waveguide (overlay for Charts A, B, or C in cover envelope).
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obtained by multiplying the normalized volt-
age by the square root of the product of the
power and the characteristic impedance (or
by the square root of the ratio of the power
and the characteristic admittance). The actual
current is obtained by multiplying the nor-
malized current by the square root of the
ratio of the power and the characteristic
impedance (or by the square root of the
product of the power and the characteristic
admittance). In waveguide transmission in the
TEM mode, such as propagated in ¢oaxial and
open-wire transmission lines, the normalized
complex impedance into which power flows
is the ratio of the normalized steady-state
voltage to the normalized steady-state
longitudinal current times the cosine of
the phase angle between the voltage and
current.

The phase angle between the voltage across
a waveguide and the longitudinal current
observed at the same point will depend upon
the waveguide input impedance, or admit-
tance. This can vary between the limits of
plus and minus 90°. This phase angle may be
represented as a family of curves shown on
the voltage-current overlay in Fig. 4.2, which
apply to either impedance or admittance
coordinates of the SMITH CHART. This
phase angle is independent of the power, the
characteristic impedange, or the characteristic
admittance of the waveguide.

When the voltage-current overlay is applied
to the impedance coordinates the zero voltage
point on the overlay corresponds to zero input
impedance. When applied to the admittance
coordinates the zero voltage point corresponds
to infinite admittance. In either case, in the
inductive region of the chart the voltage
always leads the current, and the phase angle
between voltage and current is, by convention,
positive. In this region the voltage across the
inductive reactance (or inductive susceptance)
component of the input impedance (or admit-
tance) always leads the voltage across the

resistance (or conductance) component by
90°.

Similarly in the capacitive region of the
SMITH CHART the voltage always lags the
current, and the phase angle between voltage
and current is negative. In this region the
voltage across the capacitive reactance (or
capacitive susceptance) component of the
input impedance (or admittance) always lags
the voltage across the resistance (or conduct-
ance) component by 90°.

From Fig. 4.2 the shape of the current and
voltage standing waves of any amplitude may
be plotted (as shown on Fig. 3.6). This is
accomplished by drawing the desired standing
wave circle on the SMITH CHART coordi-
nates and by then observing its intersecting
points with the various normalized current
or voltage lo¢i on the overlay corresponding
to positions along the waveguide (as measured
along the peripheral length scale). It may be
seen from this overlay that only when a wave-
guide is match-terminated is uniform current
and voltage obtained throughout its length.

The radial transmission loss scales described
in this chapter will, of course, apply to the
current and voltage overlay curves on Fig.
4.2, However, since the transmission loss in
one-half wavelength of waveguide is generally
small at high frequencies, such losses will not
generally have a significant effect upon the
standing wave shape in a given region along a
waveguide, except in the minimum region of
a standing wave having a large amplitude
ratio.

When using the universal voltage-current
overlay (Fig. 4.2} on the SMITH CHART
coordinates, one should remember that the
position of all voltage minima points along a
waveguide always coincides with the position
of minimum input impedance along the re-
sistance axis. Thus, the peripheral length scale
on the SMITH CHART in Fig. 3.3, pro-
gressing clockwise and labeled “wavelengths
toward generator,” indicates wavelengths
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toward generator from a VSWR minimum
position when its zero position is aligned
with zero voltage at the left-hand end of
the overlay axis.

If the voltage-current overlay is applied to
the admittance coordinates of the SMITH
CHART the position of zero voltage on the
overlay coincides with the position of maxi-
mum admittance. In this case, the peripheral
length scale indicates wavelength toward gen-
erator from a VSWR maximum position.

PROBLEMS

4-1. A lossy waveguide is conducting power
to a mismatched load with produces a
standing wave ratio § near the load end
whose value is 3.0. One-third of the
total attenuation is due to dielectric loss
and the remaining two-thirds is due to
conductor loss. Determine graphically
the distribution of the combined losses
along one-half wavelength of the standing
wave near the load end of the guide.

Solution:

1. On SMITH CHART A in the cover
envelope, draw a 3.0 standing wave ratio

tained from the SWR scale across the
bottom of the chart.

2. Superimpose Chart A on the normal-
ized voltage and current overlay (Fig.
4.2), and at the intersection of the 3.0
standing wave ratio circle with the normal-
ized voltage and current curves on the
overlay, observe and tabulate their am-
plitudes, as in Table 4.1, at eight points
spaced one-sixteenth wavelength apart.

3. From the above data plot, as in Fig.
4.3, the normalized voltage and current
standing wave shapes (curves C and A,
respectively).

4. Square the amplitude values at the
data points on both voltage and current
curves and tabulate the results, as in
Table 4-1. Plot loss distribution curves
through the squared amplitude values
(curves D and B, respectively) as in
Fig. 4.3. These latter curves represent
the loss distribution due to diglectric
and conductor losses, respectively, each
of which would represent the overall
distribution only in the complete absence

of the other.
5. Multiply the loss distributions by

the originally specified 1/3 and 2/3
factors, respectively, and tabulate the

circle. The radius of this circle is ob- individual and the combined losses, as

Table 4.1. Data for Prob. 4-1.
DIST IN WAVELENGTHS

0716 116 2/16 3/16 416 5716 6/16 716 B/16
FROM E gy TOWARD LOAD
NORMALIZED 1732 lLe22 1.302 0.852 0577 | oasz 1.302 1622 | 1732
CURRENT (I}
CONDUCTOR LOSS 3000 | 2630 | 1696 | o726 | 0333 | o726 | 1698 | 2630 | 3.000
{ PROPORTIONAL TO 12
NORMALIZED 0577 | o.B52 1.302 1622 1.732 622 | 1302 | o8s2 | os??
VOLTAGE (E)
DIELECTRIC LOSS

? .

(PROPORTIONAL T0 E21 0333 | o7ze | 1696 | 2630 | 2000 | 2830 | 1696 | 0728 | 0.333
2/3 CONDUGCTOR LOSS 2,000 | 1754 | 1Li3 0484 | 222 | c4sa | 113 1754 | 2.000
(/3 OIELECTRIC LOSS o o242 | o565 | os7e | 1000 | o87e | 0565 | o242 | 0.
COMBINED CONDUCTOR . '
O e EC TR 210 1.996 | 1695 | 1360 222 | 1360 696 | 1e96 | 2.
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in Table 4.1. Plot the combined loss about a mean value whose amplitude
distribution as tabulated in Table 4.1 closely approximates that of the “stand-
as the dot-dash curve (E)} in Fig. 4.3. ing wave loss coefficient” (horizontal
Note that this curve varies cyclically line F).
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Fig. 4.3.  Solution for Prob. 4-1, waveguide foss distribution when $ = 3.0



5.1 PHASE RELATIONSHIPS

he phase relationship between the reflected

and incident traveling voltage waves, and
between the reflected and incident traveling
current waves, at various positions along a
waveguide has been discussed briefly in Chaps.
| and 3. In Chap. 4 an additional phase
relationship, namely, that between the steady-
state (standing wave) voltage and the steady-
state (standing wave) current at various
coincident points along a waveguide was
discussed. The two former relationships are,
respectively, the phase angle of the voltage
reflection coefficient and the phase angle of
the current reflection coefficient. The latter
is the phase angle of the power factor—the
power factor itself being thus defined as the
cosine of this angle [35]. All three of the
foregoing phase relationships have been shown
to be graphically representable as overlays on
the impedance coordinates of the SMITH
CHART.

CHAPTER

Waveguide
Phase
Representations

It has also been shown that the voltage-
current phase relationship (phase angle of
power factor) overlay (Fig. 4.2) can be ap-
plied to a SMITH CHART whose ¢coordinates
are labeled to represent either impedances or
admittances (such as the SMITH CHART of
Fig. 3.3). Directions were indicated therein
for properly orienting the overlay on the
specific coordinates selected, and for inter-
preting the sign of the indicated phase angle.

In this chapter some fundamental wave-
guide phase conventions will first be reviewed.
Following this, more generalized uses of the
peripheral scale labeled “‘angle of reflection
coefficient” (Fig. 3.3) will be presented.
Next, a discussion of the voltage, current, and
power transmission coefficient, with general-
ized SMITH CHART overlays therefor, will be
given. Finally, some additional waveguide
voltage and waveguide current phase relation-
ships will be discussed and presented in the
form of general-purpose overlays for the
SMITH CHART. These latter phase relation-
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ships are of fundamental importance in the
design of waveguide components and antennas
employing phased radiating elements excited
through waveguide feed systems.

5.2 PHASE CONVENTIONS

In waveguide terminology, phase describes
the particular stage of progress of any periodi-
cally alternating quantity. It may also describe
the relative progress of two such quantities.
The two quantities may be at the same or at
separate positions along a waveguide and they
may or may not be of the same kind. Wave-
guide quantities which are customarily related
by phase include currents, voltages, or current
vs. voltage.

Absolute phase is expressed as the total
number of cycles (including any fractional
number) separating the two quantities, where-
in one complete cycle is 2= radians or 360°.

Relative phase is frequently of more interest.
This is the absclute phase less the largest inte-
gral number of 27 radians (or 360°) which
separates the quantities. The unit of phase 1,
therefore, the radian, or the electrical degree.

Relative phase is represented graphically as
the angle between two periodically rotating
vector quantities. If the periodicity of the
{wo Quantities is the same, as in all waveguide
applications to be considered in this book, the
relative phase is independent of real time
variation. If the two quantities are not ex-
actly in-phase (0°) or out-of-phase (+180°),
one of them is considered to have a relative
phase lead or lag over the other.

Increasing phase lag (or decreasing phase
lead) is represented by a clockwise rotation of
a voltage or a current vector. Conversely,
decreasing phase lag (or increasing phase lead)
is represented by a counterclockwise rotation
of a vector.

Table 5.1. Voltage or Current Phase Relations Along a Lossless Waveguide When SWR = 3.0

{Refer to Fig. 5.1).

(SWR= 3.0}

VOLTAGE (OR CURRENT)

STANDING WAVE #1 MAX. P . #2 MAX
3 3
GEN.a— MIN. — LOAD
|
POINTS OF OBSERVATION giMax] Py | P, | P | MN.| B | Py | Py fH2MIN
{along standing wave, .0625 A apart)
PHASE OF INCIDENT WAVE +90 [+67.5 | +45 |+225| 0O |-22.5| ~45 | -67.5| -30
{rel. to incid. wave @ min.)
PHASE OF REFLECTED WAVE -80 -675 | -45 -22.5 Q +22.5(+45 |+867.5|+4+90
{rel to refl, wave @ min.)
HA F REFL. COEFF.

P .SE 0 L C |+45 +90 +I35 4180 |-135 -90 -45 0
{ratio refl. to incid. wove} -
PHA,SE oF TRANS.M'FOEFF' o |+i4 +255(+29.5 O |-29.5| -255| -14 o
{ratio transm. to incid. wave)
PHASE OF STQNDING WAV.E AT A PT. 90 82 715 52 o |52 715 -82 -0
{rel.to stonding wave @ min.}
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Fig. 5.1.  Vector representation of phase relations for voltages on impedance coordinates, or currents on admittance coordinates,

of SMiTH CHART when SWR = 3.0 {refer to Table 5.1).

A relative phase lag of one vector over
another is indicated by a negative sign (—)
on the lagging vector, whereas a relative phase
lead of one vector over another is indicated by
a positive sign {(+).

In accordance with the above convention,
Fig. 5.1 shows a SMITH CHART upon which
eight specific vector representations of the
voltage or current on the impedance or admit-
tance coordinates, respectively, are plotted.
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These representations are for eight uniformly
spaced positions within one-half wavelength
of wavepuide, accompanying a standing wave
whose amplitude ratio is 3.0. They illustrate
the amplitude and phase relationships of the
incident, reflected, and resultant wave com-
ponents.

The various relationships involving phase at
any position along a waveguide which have
been, or will be, discussed herein include:

1. Phase of the incident wave relative to
the incident wave at the nearest standing wave
minimum position.

2. Phase of the reflected wave relative to
the reflected wave at the nearest standing wave
minimum position.

3. Phase of the reflection coefficients
(phase of reflected voltage or current wave at
any position relative to the incident wave at
the same position).

4. Phase of the transmission coefficients
{phase of transmitted voltage or current wave
at any position relative to the incident wave
at the same position).

5. Phase of stending wave (phase of re-
sultant of incident and reflected wave at a
point along a standing wave relative to result-
ant wave at the standing wave minimum
position),

All of the above relationships are repre-
sentable, and may be evaluated by graphical
means for any specified position along a wave-
guide, and for any sf;ecified standing wave
ratic (or load impedance). The numerical
results for the eight examples are given in
Table 5.1.

5.3 ANGLE OF REFLECTION
COEFFICIENT

It was previously indicated that the angle
of the reflection coefficient scale (Fig. 3.3)
applies to the voltage reflection coefficient
phase angle on impedance coordinates. More
generalized uses for this scale, as drawn, will

be shown which are consistent with the
previously discussed conventions.

Zero relative phase angle for the voltage |
reflection coefficient occurs at all voltage
maxima positions along a waveguide, at which
points the impedance is maximum (and the
admittance is minimum). At these points the
reflected and incident voltage waves are in
phase. Likewise, zero relative phase angle for
the current reflection coefficient o¢curs at the
current maxima positions along a waveguide !
where the impedance is minimum (and the |
admittance is maximum). At these points the
reflected and incident current waves are in
phase.

Thus, as shown on Fig. 3.3, the angle of the
reflection coefficient scale applies not enly to
the voltage reflection coefficient on the im-
pedance coordinates, but also to the current
reflection coefficient of the admittance co-
ordinates.

A simple rule which applies to any com-
bination of voltage or current reflection coef-
ficient and impedance or admittance coordi-
nates is that zero on the reflection coefficient
phase angle scale should always be aligned
with a maximuwm of the corresponding stand-
ing wave,

5.4 TRANSMISSION COEFFICIENT

A term which is used less frequcntly'than
reflection coefficient but which is nevertheless
useful in many waveguide applications is
transmission coefficient. This term, like re-
flection coefficient, may be applied to any two
associated quantities at any given position
along a waveguide. The chosen quantities
must, of course, be specified. In waveguides,
the term transmission coefficient is most
frequently applied to voltage and current,
although it may also be applied to power.
The value of the transmission coefficient, like
that of the reflection coefficient, will depend
upon the associated quantities selected, the
frequency, and the mode of transmission.




The voltage transmission coefficient is de-
fined as the complex ratio of the resultant of
the incident and reflected voltage to the
incident voltage. Similarly, the current trans-
mission cogfficient is defined as the complex
ratio of the resultant of the incident and
reflected current to the incident current.

Since power has no ‘“phase,” the power
transmission coefficient is simply the scalar
ratio of the transmitted to incident power.
This is constant at all positions along a lossless
waveguide. The power transmission coefficient
is numerically equal to one minus the power
reflection coefficient, which was described in
Chap. 3. Figure 5.2 shows a radial scale for
the SMITH CHART coordinates in Fig. 2.3
representing this parameter. This scale applies
equally to the impedance and admittance
coordinates.

A graphical representation of the relation-
ship between the complex voltage (or current)
reflection coefficient p/a and the complex
voltage (or current) transmission coefficient
/P is shown in Fig.'5.3.

From the geometry of Fig. 5.3 the magni-
tude of - in terms of p and « is seen to be

7] = [p2 + 1 = 2p cos(180° — 1"

(5-1)

Similarly, the magnitude of p in terms of -
and B is
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Since p is always between zero and unity, it
will be observed from Fig. 5.3, or from Egs.
(5-1) and (5-2), that the magnitude of » must
always be between zero and two. Scales
representing the magnitude of 7 as a voltage
(or current) ratio, and in dB, are shown in Fig.
5.2. In the region along a waveguide where
the voltage transmission coefficient is greater
than unity, resulting in a gain, the current
transmission coefficient will be less than
unity, resulting in a compensating loss.

Also from the geometry of Fig. 5.3, the
phase angle 8 in terms of p and « is seen to be

p sin(180° — @)
1 - p eos{180° - &)

B - tan! (5-3)

Similarly, the phase angle « in terms of - and

B is

T Sinﬂ

a = 180° — tap~t 2P
1 ~rcosf3

(5-4)

At any given position along the waveguide the
phase angle of - and p will always have the
same sign.

Both the voltage and the current transmis-
sion coefficient may be represented by a single
overlay on the coordinates of the SMITH
CHART shown in Fig. 3.3. Such a general-
purpose transmission coefficient overlay is

PI¥OT AT CENTER

QOF CHART
POWER TRANSMISSION COEFFICIENT - RATIO ‘
r T T T T T T TYrT Y ..I TY T rrrvrrr 1T roT1r TFr1rrrprr T 1
=5 % 8 & 5 B 3 2 . b3 5
A N A
POWER TRANSMISSION COEFFICIENT - DB
- B, - CHART DIAMETER "
VOLTAGE (OR CURRENT) TRANSMISSION COEFFICIENT - RATIO
- ) i o in i o Y [ = - = - = = = - = - Iy
E (=] [=] [+] . [=] . [+] o a [=] & [=] - ta 7] - o ™ — ™ o o
e SO R S e ama Sl e Sl e B B e e e o B e e e B Lt B I m e my
pseg =8 sg8 ¥ s s & o5 s ° B 5 5 5 3 5
T {LOSS) YOLTAGE (OR GURRENT) TRANSMISSION COEFFICIENT-DB (GAIN]

PIVOT AT O VOLT
(OR 0 CURRENT)] POINT
AT RIM OF CHART

Fig. 5.2.

Power, voltage, and current transmission coefficient magnitude scales for SMITH CHART coordinates in Fig. 2.3.
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0 333 1.0 15 1.667 2.0
{SWR MIN} TRANSM, COEF. MAGNITUDE [y (SWR MAX)
pra]
z /
[, ]
5 //
/
s
/7%
o 5 667 10
l | | | || | 1

REFL. COEF. MAGNITUDE

Fig. 5.3,

Representation of voltage or current reflection coefficient magnitude and phase, and

voltage or current transmission coefficient magnitude and phase on a SMITH CHART {diagram shows

conditions at a point along a standing wave whose ratio is 5.0}.

shown in Fig. 5.4. As oriented in Fig.
5.4, in relation to Fig. 3.3, it represents the
voltage transmission coefficient on the im-
pedance coordinates, or the current transmis-
sion coefficient on the admittance coordinates.
When rotated 180° from this orientation, the
overlay of Fig. 5.4 represents the voltage
transmission coefficient on the admittance
coordinates, or the current transmission coef-
ficient on the impedance coordinates of this
same chart. The convergence point of all
transmission coefficient phase angles on this
overiay should always be aligned radially with
the corresponding standing wave minima
points.

From the transmission coefficient overlay
the shape vs. amplitude of all standing waves
of voltage or current along a waveguide may
be plotted for a constant incident wave
amplitude.

Standing wave shapes for three specific
standing wave amplitude ratios have been
plotted in Fig. 1.3. Note that the maximum
voltage (or current) never exceeds twice the
incident voltage (or current) at any point
along a waveguide.

The requirement for a constant incident
wave on a waveguide is commonly satisfied by
inserting a large, for example, 20-dB or more,
dissipative attenuator, whose characteristic
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Fig. 5.4, Complex voltage or current transmission coefficient along a waveguide {overtay for Charts A, B, or C in cover envelope}.
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impedance matches the waveguide, between
the generator and the waveguide, In this way re-
flected waves from the load do not return to
the generator with sufficient power to signifi-
cantly affect its output power. Consequently,
the incident wave on the waveguide is held
constant and independent of the load im-
pedance or admittance characteristics.

The phase angle of the voltage (or current)
transmission coefficient is a measure of the
extent that the resultant wave departs in its
phase relationship with the incident wave.
The maximum departure from an in-phase
relationship depends upon the standing wave
ratio, being smallest for small standing waves
and reaching a maximum of 90° for an infinite
standing wave ratio,

5.5 RELATIVE PHASE ALONG A
STANDING WAVE

Another useful waveguide phase relation-
ship is the relative phase angle between the
standing wave voltages (or currents) at any
two positions along a waveguide. This phase
relationship is particularly important in the
design of phased-array antennas. It should
not be confused with the relative phase at two
peints along a traveling wave, nor with the
relative phase angle of the voltage (or current)
reflection (or transmission) coefficients at the
two points.

The standing voltage (or current) wave at
each of two separated positions along a wave-
guide is the vector sum of the incident and the
reflected voltage (or current) waves at the
respective positions (Fig. 5.1). The relative
phase between these two resultant voltages
(or currents) is not linearly related to their
physical separation. It is a function of the
degree of mismatch of the waveguide and
load (standing wave ratio) and the positions
along the waveguide relative to the position
of some reference point on the standing wave.

While any reference position is possible, the
most generally useful position is the minimum
position of the standing wave nearest to the
point of measurement, either toward the load
or toward the generator. The selection of a
minimum reference position along a standing
wave on a waveguide makes it possible to plot,
and to unambiguously identify, the phase
angle on a family of relative-phase curves for
all standing voltage or current waves along a
wavegnide. Such a plot, as shown in Fig. 5.5,
may conveniently be used as an overlay for
the SMITH CHART impedance or admittance
coordinates. From the reference phase shift
at each of the two points the relative phase of
the standing wave voltage or current at the
two points is readily obtainable.

Mathematically, the relationship for the
phase of the standing wave voltage or current
at a point relative to that at the nearest
minimum point is

é - tan-l(s tan 3:—3) (5-5)
where I/x is + in the direction of the generator
from the minimum point. Thus, if 1/A (the
distance from the standing wave minimum
point to the point in question) is in the
direction of the generator (positive direction)
the phase angle at the point in question is
positive, i.¢., it leads the phase at the mini-
mum point. In the opposite direction, i.e.,
toward the load from the minimum, /X is
negative and the phase at all points in the
region between the minimum and the fol-
lowing maximum lags that at the minimum.
The overlay of Fig. 5.5 was machine-
plotted. Equation (5-5) was first rewritten to
express ¢ in terms of the voltage reflection
coefficient magnitude p and its phase angle .
{See Eq. (3-8).) The resulting equation is

sinl¢ - (2/2)]
= ——— 5-6
P sin{¢ + (a/2)] (>6)
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Fig,5.5. Phase of voltage or current at any point along a waveguide relative ta voltage ar current, respectively, at nearest
minimum point {overlay for Charts A, B, or C, in cover envelope).
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The » and y components of the phase angle ¢
are

X - p COSe (5-7)

y — p sina (5-8)

The relative phase of the current at any
two positions along a standing current wave
of a given amplitude ratio on a waveguide is
identical to the relative phase of the voltage
at any two corresponding positions along a
standing voltage wave of the same amplitude
ratio. Accordingly, the phase overlay of Fig.
5.5 may be used tc obtain either relative
.voltage or relative current phase relations.
This overlay may also be used on either the
impedance or the admittance coordinates.

A simple rule to follow in orienting the
overlay of Fig. 5.5, for cither voltage or
current phase relationships on the SMITH
CHART impedance or admittance coordinates,
is to observe that the overlay is always oriented
so that the phase change vs. length of wave-
guide is greatest in the region of the respective
standing wave minima.

The eight vector phase relationships plotted
in Fig. 5.1 may conveniently be used as check
points on the proper orientation of any of
the phase overlays which have so far been
discussed. As shown, they represent voltages
on impedance coordinates or currents on ad-
mittance coordinates. When rotated, as a
group, through 180° with respect to their
present positions on the coordinates, they
represent voltages on the admittance coordi-
nates or currents on the impedance coordi-
nates.

5.6 RELATIVE AMPLITUDE ALONG A
STANDING WAVE

The relative amplitude of the voltage (or
current) 4t any two points along a standing

wave are uniquely related to the relative phase
at the two points. Hence it is possible to plot
the family of amplitude ratio curves in Fig.
5.6 which are uniquely related to the family
of phase curves in Fig. 5.5.

All of the rules which have been given for
application of the phase curves of Fig. 5.5 to

voltage orcurrent on impedance or admittance
coordinates also apply to the amplitude curves

of Fig. 5.6.

PROBLEMS

5-1. One radiating element of an array antenna
is connected via a coaxial cable to a
junction point of a “corporate” feed
system. The known conditions are: (1)
electrical length of the cable is 6.279
wavelengths, (2) attenuation is 1.0 dB,
(3) normalized load impedance of cable
is 1.6 -j 1.35 ohms. (See insert in Fig.
5.7))

Using a SMITH CHART, determine
(1) the standing wave ratio in the cable
at its load end, (2) the normalized send-
ing end impedance Z _/Z;, (3) the standing
wave ratio in the cable at the sending
end, (4a) the voltage transmission coef-
ficient r at each end of the cable, (4b)
the voltage insertion phase ¢, (5a) the
current transmission coefficient r;at each
end of the cable, and (5b) the current
insertion phase ¢; .

Solution:

1. As shown in Fig. 5.7, locate on
SMITH CHART A in the cover envelope
the normalized load impedance Z,/Z, =
1.60 - j 1.35, and construct a standing
wave circle centered on the chart co-
ordinates, passing through this imped-
ance point. Observe that the radius of
this circle, as laid out on the SWR scale
across the bottom, shows that at the
load end of the cable the standing wave
ratio S is 3.0.
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Fig. 5.6. Amplitude of voltage or current at any point along a waveguide relative to voltage or current, respectively, at nearest
minimum point (overlay for Charts A, B, or C in cover envelope).
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Fig. 5.7.  Construction for Prob. 5-1, transmission coefficients and insertion phase.




2. Move clockwise around this standing
wave circle (toward generator) a distance
equal to 0.279 wavelength, as measured
on the outermost peripheral scale, to the
sending end position, where in the ab-
seice of attenuation the sending end
impedance would be 0.42 + j 0.50.
(Note: the largest integral number of
half wavelengths is subtracted from the
total electrical length since relative—not
absolute—phase is required.) Correct for
1.0-dB attenuation by moving radially
toward the center of the chart coordi-
nates a distance corresponding to 1.0-dB
major divisions as obtained from the
attenuation scale across the bottom, to
the position where the normalized
sendingend impedance Z /Zyis 0.54 tj
0.49.

3. The standing wave ratio at Z /Z, =
0.54 + j 0.49 is seen to be 2.3 when
measured as the radial distance on the
chart coordinates, employing the SWR
scale across the bottom.

4a. Construct straight lines from the
origin of the chart coordinates through
the load and sending-end impedance
points, respectively, intersecting the in-
nermost peripheral voltage transmission
coefficient angle scale. Determine the
magnitudes of the voltage transmission
coefficient at each end of the cable using
the magnitude scale across the bottom,
and thus observe that at the load end of
the cable rp = 1.43/12.7°, and at the
sending end r = 0.87/23.4°.
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4b. The voltage insertion phase ¢ is the
phase change undergone by the voltage
traveling wave (total angle of a match-
terminated cable reduced to an equivalent
electrical length less than one-half wave-
lengths) plus the net difference in the
angles of the voltage transmission coef-
ficients at the load and sending ends,
respectively. Thus, in this example,

YE
- §0.279 x 360° + [(-12.7% - (+23.4°)}

= 64.3°

5a. Use the complex transmission coef-
ficient overlay (Fig. 5.4) to represent the
current transmission coefficients by in-
verting it (rotating it 180°) with respect
to the impedance coordinates of Fig. 5.7,
Then observe from this overlay that at
the normalized load impedance point,
where Z,/Z; = 1.6 — j 1.35, the current

transmission coefficient r; is 0.68/27.5%,
and at the sending-end impedance point,
where Z . /Zy= 0.54 +; 0.49, the current
transmission coefficient is 1,245/16.0°.

5b. The current insertion phase ¢ [ I8
obtained analogously to that of the volt-

age insertion phase as described in Prob.
4b, and is found to be

ey

= {0.279 x 360° + [(+27.5) - (~16.0°)]}
= 143.9°






6.1 IMPEDANCE CONCEPTS

n this chapter the concept of waveguide

input impedance (and admittance) is pre-
sented first. This is followed by a considera-
tion of the input impedance (or admittance)
relationships of a waveguide to those of
simple series or parallel circuits which present
equivalent impedance (or admittance) at a
given frequency.

Two overlays for conventional SMITH
CHART coordinates which provide alternative
coordinate forms, useful in specific waveguide
applications, wili be described. One of these
coordinate overlays displays normalized input
impedance components presented by the
equivalent parallel-circuit (rather than the con-
ventional series-circuit) elements, and/or nor-
malized input admittance components -pre-
sented by the equivalent series-circuit (rather
than the conventional parallel circuit) ele-
ments. The other overlay displays normalized

CHAPTER 6

Equivalent

Circuit
Representations of
Impedance and
Admittance

polar coordinate components of impedance,
i.e., magnitude and phase angle.

A graphical method for combining two
normalized polar impedance vectors in parallel,
which utilizes special polar coordinates, is
included.

6.2 IMPEDANCE-ADMITTANCE
VECTORS

The input impedance at any specified posi-
tion along a waveguide is, fundamentally, the
complex ratio of voitage to current at that
position; the input admittance is the recipro-
cal of this ratio. Any sinusoidally varying
voltage or current at any point in a waveguide
may be represented by the projection of a
uniformly rotating vector on a fixed axis. The
ratio between voltage and current is a station-
ary vector whose magnitude is the ratio of
voltage magnitude to current magnitude, and

57
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whose angle is the difference between the
phase angles of the woltage and current
vectors. Thus, waveguide input impedance
and its inverse {waveguide input admittance)
may be regarded as stationary vectors. At a
given position along a waveguide these two
vectors have reciprecal magnitudes and equal
phase angles of opposite sign.

The terms waveguide input impedance and
waveguide input admittance were defined and
discussed briefly in Chap. 2. The “normaliza-
tion” of these terms to the waveguide char-
acteristic impedance or characteristic admit-
tance, respectively, was also discussed therein.
AlsoinChap. 2, the conversion of a normalized
waveguide input impedance to an equivalent
normalized waveguide input admittance, and
vice versa, on conventional SMITH CHART
coordinates was described.

6.3 SERIES-CIRCUIT REPRESENTATIONS
OF IMPEDANCE AND EQUIVALENT
PARALLEL-CIRCUIT REPRESENTA-
TIONS OF ADMITTANCE ON CON-
VENTIONAL SMITH CHART
COORDINATES

Waveguide input impedance and input ad-
mittance vectors may be expressed in either
complex or polar notation. On conventional
SMITH CHART coordinates, such as the co-
ordinates in Fig. 6.1, the complex notation is
used. On this chart the normalized impedance
presented by series-circuit combinations of
resistive and inductive (or capacitive) circuit
elements is expressed in complex notation by

!
[==]

JX
y 2
0 Z(]

5 & B

(6-1)

ON
|

Similarly, the normalized input admittance
presented by parallel-circuit combinations of

these respective circuit elements is expressed

by

Y ¢ B

£L_ 2 F (6-2)
Yo Yo Y

The vector diagrams superimposed on the
conventional SMITH CHART coordinates of
Fig. 6.1 show normalized input impedance
vectors Z_/Z, and (diametrically opposite)
normalized input admittance vectors Y /Y, at
eight positions equally spaced along one-half
wavelength of waveguide. In this example, a
waveguide termination is arbitarily chosen
which produces a standing wave ratio of 3.0.
The normalized impedance vector Z,/Z,, for.
example, represents the impedance of a se-
ries circuit which is equivalent, at a given
frequency, to the parallel circuit represented
by the diametrically opposite admittance
vector Y;/Y,. Similarly, the normalized
impedance vector Z,/Z, represents the im-
pedance of a series circuit which is equivalent,
at a given frequency, to the parallel circuit
represented by the diametrically opposite
admittance vector Y,/¥,.

In the upper half of the SMITH CHART
of Fig. 6.1 normalized impedances are repre-
sented at a single frequency by series circuit
combinations of resistive and inductive cle-
ments, that is, R/Z, + jX/Z,. The voltage
across any inductive circuit leads the current
flowing into the circuit by a phase angle
between 0° and 90°. As discussed in Chap. 5,
a lead is indicated graphically by a counter-
clockwise rotation of a vector, and the sign of
the angle is positive. Impedance vectors in
the upper half of the SMITH CHART of
Fig. 6.1 are therefore assigned positive phase
angles. Conversely, impedances in the lower
half of Fig. 6.1 arc assigned negative phase
angles.

The above convention for the representa-
tion of impedance vectors also applies to the
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representation of admittance vectors. Thus, ad- by an angle between 0° and + 90°. Since
mittances in the upper half of Fig. 6.1 are rep- admittance is the reciprocal of impedance,
resented by parallel-circuit combinations of i.e., the ratio of current to voltage, capacitive
conductance and capacitance, that is, G/Y; + admittance vectors have a positive angle and
jB/Y,. This follows from the fact that in all li¢ in the upper half of the SMITH CHART.

capacitive circuits the current flowing into The complex impedance and complex ad-
the circuit leads the voltage across the circuit mittance represented, respectively, by series
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Fig. 6.1. Normalized impedance and admittance vector relationships along a waveguide when SWR = 3.0.
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combinations of resistive and reactive circuit
elements, and parallel combinations of con-
ductive and susceptive circuit elements, are
shown in Fig. 6.2(a) and 6.2(b). A specific
example is illustrated in Fig. 6.3. The two
equivalent circuit positions (A and B) shown
in this latter figure are diametrically opposite
one another at equal chart radius.

(1] bll
Rl vogeis,  [G] B
+i%e -

Fig. 6.2.

Equivalent series and parallel circuits.

As may be seen from Fig. 6.2(a) and (b),
the usual representation of waveguide input
impedance (in terms of its series circuit com-
penent values) facilitates the calculation of
the resultant input impedance when additional
series elements are to be added. Similarly, the
usual representation of waveguide input admit-
tance in terms of its parallel-circuit component
values facilitates the calculation of the re-
sultant input admittance when additional
parallel elements are to be added.

6.4 PARALLEL-CIRCUIT REPRESENTA-
TIONS OF IMPEDANCE AND SERIES-
CIRCUIT REPRESENTATIONS OF
ADMITTANCE ON AN ALTER-

NATE FORM OF THE SMITH
CHART

In some applications it is useful to represent

waveguide input impedance by a parallel
combination of resistive and reactive primary

circuit elements [Fig. 6.2(c)]. Similarly, it is
sometimes useful to represent waveguide input
admittance by series combination of con-
ductive and susceptive primary circuit ele-
ments [Fig. 6.2(d)].

Figure 6.2(c) shows a paralle]l combination
of a resistance R ,and an inductive or capac-
itive reactance * jX P’ resulting in an input
impedance Z. The input impedance of this,
as of any parallel circuit, is equal to the re-
ciprocal of the sum of the reciprocals of the
resistive and reactive components, viz.,

1

Z - —— (6-3)
l/Rp + 1,/1'_11')(p

Equation (6-3) can be rationalized to obtain
the component parts of Z which represent
resistance and reactance of the equivalent series
circuit shown in Fig. 6.2(a) (R t jX ), viz,,

R X 2 R2X
R, %jX, = zppzij PP (64
Rp +Xp

Similarly, as shown in Fig. 6.2(d), a partic-
ular combination of a conductance G, in
series with an inductive or capacitive suscep-
tance ¥jB_ results in an input admittance Y,
which is equal to the reciprocal of the sum of
the reciprocals of the conductive and suscep-
tive components of the series circuit, viz.,

= ___1— (6-5)
1/Ge3 + l/ist

Equation (6-5) may similarly be rationalized

to obtain the component parts of Y which

represent the conductance and susceptance of

the equivalent parallel circuit shown in Fig.
6.2(b) (Gp and B ), viz.,

G,B,>? G,%B,
Gp$ij _ &8 ;j’ & & (6-6)
¢2+B2%2 ©¢2+B2

& 5




EQUIVALENT CIRCUIT REPRESENTATIONS OF IMPEDANCE

The conventional SMITH CHART coordi-
nates shown in Fig. 6.1 are not suitable for
portraying, directly, the parallel-circuit com-
ponent values of impedance or the series
circuit component values of admittance. How-
ever, these latter component values may be
plotted directly onm an alternate form of
coordinates shown in Fig. 6.4. The modifica-
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tion of the conventional SMITH CHART to
obtain this alternate form invelves the redes-
ignation of all normalized coordinate values
with their reciprocal values, and the rotation
of coordinates through 180° with respect to
the peripheral scales. Rotation of the coordi-
nates through an angle of 180° is necessary so
that fractional wavelength designations on the
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admittance (B) at the same position along a waveguide, on SMITH CHART in Fig. 3.3.

Series-circuit representation for an impedance (A} and eguivalent parallel-circuit representation for an equivalent
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Fig. 6.4. Alternate form of SMITH CHART coordinates displaying ractangular components of equivalent parallel-circui
impedance {or of series-circuit admittance) {overlays for Charts A and C in cover envelope).
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peripheral scales of this alternate form SMITH
CHART refer to voltage nodal points on its
impedance coordinates {and to current nodal
poinis on its admittance coordinates), as on
the conventional SMITH CHART. Also, as
will be shown later, this permits the use of
this alternate form of SMITH CHART co-
ordinates to be used as an overlay for the
conventional coordinates for converting series
to equivalent parallel-circuit components.

The two positions A and B indicated on the
alternate form of SMITH CHART coordinates
{Fig. 6.6) give, respectively, the parallel-circuit
impedance components, and the series-circuit
admittance components of equivalent circuits.
Equivalent circuit positions on the coordinates
of either Fig. 6.3 or Fig. 6.6 must always be
located diametrically opposite each other at
equal chart radius.

6.5 SMITH CHART OVERLAY FOR CON-
VERTING A SERIES-CIRCUIT IM-
PEDANCE TO AN EQUIVALENT
PARALLEL-CIRCUIT IMPED-

ANCE, AND A PARALLEL-
CIRCUIT ADMITTANCE
TO AN EQUIVALENT
SERIES-CIRCUIT AD-
MITTANCE

On the conventional SMITH CHART of
Fig. 6.3, point A represents the impedance of
a circuit whose normalized series component
values may be read directly from the chart
coordinates. On the alternate form of SMITH
CHART of Fig. 6.6, point A, at the same
location, represents the impedance of a circuit
whose equivalent normalized parallel compo-
nent valucs may also be read directly from the
chart coordinates. Thus, any two coincident
points on these respective charts correspond
to equivalent series and parallel-circuit com-
binations whose normalized resis{ive and re-
active components are readable from the
respective charts at a single frequency.

Thus, the alternate form of SMITH CHART
coordinates shown in Fig. 6.6 (drawn with-
out circuit diagrams or peripheral scales in
Fig. 6.4) provides an overlay for conventional
SMITH CHART coordinates (Fig. 3.3} which
permits graphically converting component val-
ues of series-circuit normalized impedance to
equivalent component values of parallel-circuit
normalized impedance. Similarly, this overlay
provides a convenient means for graphically
converting component values of parallel-circuit
normalized admittance to equivalent com-
ponent values of series-circuit normalized ad-
niittance.

When the overlay of Fig. 6.4 is provided
with the peripheral scales on Fig. 3.3 the re-
sulting chart (Fig. 6.5) becomes an alternate
and basic form of SMITH CHART to which
all of the overlays applicable to the series
component chart (Fig. 3.3 or Fig. 8.6) are
equally applicable.

The general-purpose, parallel-impedance (or
series-admittance) chart shown in Fig. 6.5 is
reproduced as one of four translucent plastic
charts whose function is described in the
Preface and which is contained with the other
three in an envelope in the back cover of this
book (Chart B).

6.6 IMPEDANCE OR ADMITTANCE MAG-
NITUDE AND ANGLE OVERLAY
FOR THE SMITH CHART

Complex impedance or admittance vectors
R t jXor G ¥ jB, respectively, may also be ex-
pressed in polar form, that is, Z/+6 or Y/%6.
The magnitude of the normalized impedance
vector Z/7, in terms of its rectangular com-
ponents is

wep e

The phase angle 8 is

‘z
ZO
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' 1/2
g = iarctan()—{) (6-8) Y e 2 B
R — = ||=] + |— (6-9)
Similarly, the magnitude of the normalized The phase angle 4 is
admittance vector Y/Y, in terms of its rectan-
gular components is B
§ = T arctan (E) (6-10)

dd
", —\g‘ﬂ"
2% PMviovay 3A1LIVEED p
3 v o

Fig. 6.6.  Parallel-circuit representation for an impedance (A) and equivalent series-circuit representation for an admittance {B} at
the same position along a waveguida, on SMITH CHART in Fig. 6.5.
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The normalized resistance component R/Zg,
and reactance component X/Z,, respectively,
of an impedance expressed in polar notation,
that is, Z/10, is

R _ L\ cost+0) (6-11)
Zgy Z,

and

X _ 2] gnze (6-12)

The phase angle of the normalized imped-
ance vector (angle between the rotating volt-
age and current vectors) is also the gngle of
the power factor. This is represented graphi-
cally as an overlay for the SMITH CHART
coordinates by the family of dotted curves
in Fig. 4.2. This overlay also displays loci of
the normalized voltage and normalized current
vector extremities.

Both the magnitude and the phase angle
of the normalized impedance and admittance
vectors are plotted in Fig. 6.7, which is useful
as an overlay for SMITH CHART A or B in
the cover envelope. As oriented in Fig. 6.7,
with relation to the orientation of the SMITH
CHART coordinates this overlay permits the
conversion of the normalized rectangular com-
ponents of impedance to equivalent normal-
ized magnitude and phase angle. When rotated
through 180° from the orientation shown in
Fig. 6.7, with respect to these same SMITH
CHART coordinates, it permits the conversion
of the normalized rectangular components of
admittance to equivalent normalized magni-
tude and phase angle. Thus, Fig. 6.7 provides
a useful means for graphically converting
components of any complex impedance or
admittance from the rectangular to the equiv-
alent polar form, and vice versa. With the
addition of the peripheral scales, Fig. 6.7
becomes a complete alternate form of trans-
mission line chart commonly known as the
Carter chart [9].

This general-purpose polar impedance (or
admittance) chart shown in Fig. 6.8 is repro-
duced as the third of four translucent plastic
charts whose function is described in the
Preface and which is contained with the other
three in an envelope in the back cover of this
book (Chart C).

6.7 GRAPHICAL COMBINATION OF
NORMALIZED POLAR IMPED-
ANCE VECTORS

The resultant of two normalized impedance
vectors, expressed in polar notation, e.g.,

Zl Z2
7@1 and Z_@z

0 0

whose representative circuit elements are con-
nected in series, may readily be obtained
graphically by the familiar parallelogram con-
struction. In this case, all vector magnitudes
are directly proportional to their lengths, and
the plot is most conveniently made on ordi-
nary polar coordinate paper with a linear
radial scale. The left half of a complete polar
plot is used only for impedances having

negative real parts (see Chap. 12).
Figure 6.9 shows a polar coordinate system

on which it is possible to plot directly the

resultant of two normalized impedance vectors
whose representative circuit elements are con-
nected in parallel. The resultant is determined
by the same parallelogram construction used
for series elements. On such a plot all vector
magnitudes are inversely related to their
lengths by a constant., The value of this con-
stant is selected on the plot of Fig. 6.9 to
provide a convenient general-purpose scale
range. This may be varied as required to
extend the range of the plot.

The significance of polar impedance vectors
whose angles lie between + 90 and + 180°, or
between — 90 and — 180°, is that the resistive
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L

Carter Chart coordinates displaying polar components of equivalent series-circuit impaedance (or of parallel-cireuit

admittange} {overlay for Smith Charts A and B in cover envelope),

fig. 6.7.
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component of the impedance represented
thereby is negative. Thus, in the example
shown in Fig. 6.9, the normalized polar
impedance vector Z/Z, = 1.2 [120° repre-
sents an impedance having a negative re-
sistance component -R/Z, = 0.6, and an

inductive reactance component +jX/Z; = 1.04,
that is, 1.2/120° = — 0.6 +j 1.04, as obtained
from Eqs. (6-11) and (6-12)}, respectively.

Figure 6.9 is useful in problems involving
polar impedance vectors, such as those repre-
sented in Fig. 6.7.




7.1 COMMONLY EXPANDED REGIONS

he accuracy which can be obtained in

plotting and reading out data on the coordi-
nates of the SMITH CHART, as with any other
chart, can be improved by simply increasing
its size to provide space for a finer and more
expanded coordinate grid. Where it is imprac-
tical to increase the overall chart size to the
desired extent, small regions of special interest
may be enlarged as much as is desired.

In this chapter, enlargements of the more
frequently used regions (see Fig. 7.1) of the
SMITH CHART will be presented and dis-
cussed, and special applications for these will
be given. The graphical representation of the
properties of stub sections of waveguide which
are operated near their resonant or antireso-
nant frequency, as may be readily portrayed
on two of these expanded charts, will be
discussed in some detail.

The specific region on a SMITH CHART
which s most commonly expanded is perhaps
a circular region at its center concentric with
its perimeter. This region, typically as shown
in Fig. 7.2 or 7.3, is of special interest because
it encompasses all possible input impedances,
and equivalent admittances, along a waveguide

CHAPTER

Expanded
Smith Charts

when the load reflection coefficient or stand-
ing wave ratio is less than the value at the
perimeter of the expanded central area. The
expanded central portion of a SMITH CHART
utilizes the same peripheral scales as the com-
plete chart; all radial scales have the same
value at the center and are linearly expanded
to correspond to the linear radial expansion
of the coordinates.

Other regions of the SMITH CHART which
are sometimes expanded to provide greater
plotting accuracy are the small (approximately
rectangular) regions shown at the top of Fig.
7.1 which encompass the two diametrically
opposite poles of the chart and which are
bisected by the real axis. These regions (Figs.
7.4 and 7.5) are particularly useful for the
representation of the electrical properties of
waveguide stubs operated near their resonant
or antiresonant frequency. These electrical
properties include input impedance (or input
admittance), frequency, bandwidth, attenua-
tion, and @, as will be more fully described
herein.

In addition to the above conventional
SMITH CHART expansions, two nonconfor-
mal transformations of the SMITH CHART
coordinates will be described which, in effect,

FA|



72

IMPEDANCE

Fig. 7.1.

ELECTRONIC APPLICATIONS OF THE SMITH CHART

o CONVENTIONAL Wiy,

INDUCTIVE REACTANCE OR
CAPACITIVE SUSCEPTANCE REGION

INVERTED {FIG. 7.8}

— "“"-...\
- : N

EXPANDED [FIG. 7.2}

4 \

HIGHLY gXPo\NDED {(FI16.7.3}
'S

N,
RN
X/ /A

fooasarte) 2

e

—_— .~

CAPACITIVE REACTANCE OR
INDUCTIVE SUSCEPTANCE REGION

.~ -
FOR RESONANT S5TUBS: A FOR ANTIRESONANT STUBS:
VYOLTAGE VOLTAGE

- ‘d g —_'j--.

g— I I —
o

B 3loE| | e
— 2 < . S—

- - _ - e RS,

i - - S Z —_—
/d"'--""-.. ,’.- j ™. ”'_ h‘\.‘
e o 1
< - - “-.______ ___../’ \‘-.h‘ ’//
£ ..—.—--"\ ".—_-“h"“\ o~ ,’Fﬁ_““\ -
X £ X

\"'--. "'/ \""-_ .--/’ ..-“'/’ \“""-..__..-’, \“‘“'--_
L L L L ] ! ] 1 1
0 1 2 3 4 Q 1 2 3 4

QUARTER WAVELENGTHS QUARTER WAVELENGTHS

Y -

Commonly expanded regions of the SMITH CHART.

e

IMPEDANCE




result in expansion of certain regions of the
chart coordinates at the expense of a com-
pression of adjoining regions. One of these
(Fig. 7.7) results from a transformation of
the usually linear radial reflection coefficient
magnitude scale into a linear radial standing
wave ratio scale. On these coordinates the
standing wave ratio is expressed as a number
ranging from 0 to 1.0 rather than 1.0 to = as
is more customary in this country,* and the
circular coordinates are distorted to permit
this standing wave ratio scale, rather than the
reflection coefficient scale, to vary linearly
from unity at the chart center to zero at its
rim. This, in effect, radially expands the
region near the center of the conventional
chart and radially compresses the region near
its rim.

The other transformation of the usual
SMITH CHART coordinates (Fig. 7.8) results
from their being radially inverted about the
linear reflection coefficient magnitude circle
whose value is 0.5. This transforms the
circular central region to a band adjacent to
the perimeter, and vice versa; no radial
expansion is provided, however.

7.2 EXPANSION OF CENTRAL
REGIONS

While any degree of linear expansion of the
central area of the coordinates of the SMITH
CHART is possible, two expansions of this
region have been selected which satisfy the
large majority of applications. The first of
these is shown in Fig. 7.2. This incorporates a
4.42/1 radial expansion of the central area of
the SMITH CHART of Fig. 3.3, and displays
reflection coefficient magnitudes between 0
and 1/4.42, that is, 0.226. This chart is suit-
able for displaying waveguide input impedance
or admittance characteristics accompanying

*In the United Kingdom, for cxample, the standing wave
ratio is usually expressed as a number less than unity,
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mismatches which produce standing wave
ratios less than 1.59 (4 dB).

The chart of Fig. 7.3 is a more highly
expanded version of Fig. 7.2. It incorporates
a 17.4/1 radial expansion of the central area
of the SMITH CHART of Fig. 3.3 and dis-
plays reflection coefficient magnitudes be-
tween O and 1/17.4, that is, 0.0573. It is
suitable for displaying waveguide input im-
pedance and admittance characteristics accom-
panying very small mismatches (standing wave
ratios of less than 1.12, or 1 dB).

Like the complete SMITH CHART of
Fig. 3.3, both of the above expanded charts
display series components of impedance and/
or parallel components of admittance. The
peripheral scales are unchanged from those on
the complete chart, and indicate distances from
voltage nodal points when used to display
impedances, and distances from current nodal
points when used to display admittances. The
radial scales have the same center values as
those for the complete chart but are linearly
expanded by the radial expansion factors
indicated above.

7.3 EXPANSION OF POLE REGIONS

Figure 7.4 is a linear expansion of the
SMITH CHART coordinates in the pole region
where the normalized impedance, or normal-
ized admittance, has a real component less
than 0.0333 and/or a reactive component less
than +j 0.02355. Similarly, Fig. 7.5 is a
linear expansion in the opposite pole region
where the normalized impedance, or normal-
ized admittance, has a real component greater
than 30 and/or a reactive component greater
than +j42.46.

At the scale size plotted in Figs. 7.4 and 7.5
the radius of the coordinates of a complete
SMITH CHART would be 84.6 inches. Figures
7.4 and 7.5 can, therefore, display as much
detail per square inch within its area as can
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be displayed on the corresponding area of a
complete SMITH CHART whose coordinates
are over 150 square feet in area,

The regions of the SMITH CHART shown
in Figs. 7.4 and 7.5 are particularly useful for
determining the input impedance (or admit-
tance) characteristics vs. frequency of wave-
guide stubs operating near resonance or anti-
resonance.

In Fig. 7.5 short portions only of a large
spiral, which could be drawn in its entirety
only on a complete SMITH CHART (nearly
vertical dashed curves), have been drawn.
These curves trace the input impedance (or
input admittance) locus on the enlarged chart
coordinates as the frequency is varied within
* 1.5 percent of the resonant frequency. Due
to the high degree of enlargement of coordi-
nates the dotted spiral curves closely approxi-
mate arcs of circles centered on the 84.6-inch-
radius SMITH CHART. Their departure is
so slight that it may, for all practical purposes,
be ignored and each curve may thus be used to
represent a particular value of waveguide at-
tenuation (one-way transmission loss) deter-
mined by its intersection with this scale at
the bottom, which value holds essentially
constant over the length of each arc. On
Fig. 7.4 the curves of constant series resist-
ance approximate very closely the input
impedance (or input admittance} locus so that
the dotted portions of the large spirals repre-
senting the locus of constant attenuation are
not required to be drawn as they are on Fig. 7.5.

The use of Figs. 7.4 and 7.5 is described in
more detail following a brief discussion of
the relationship of waveguide attenuation to
the series and parallel resonant impedance
and/or admittance of short- and open-circuited
waveguides.

7.4 SERIES-RESONANT AND
PARALLEL-RESONANT STUBS

Resonance (specifically, electrical amplitude
resonance) may be defined as a condition that

exists in any passive electrical circuit contain-
ing inductance and capacitance when its com-
bined reactance is zero. This reactance may
be lumped as in conventional circuit ele-
ments or it may be distributed as along a
waveguide.

Any uniform stub section of waveguide
whose characteristic impedance {or character-
istic admittance) is (1) essentially real, (2)
short- or open-circuited at its far end, and (3)
an integer number of quarter wavelengths
long electrically has electrical properties which
closely parallel those of simple series or par-
allel resonant circuits. At the resonant (mid-
band) frequency the input impedance, or
admittance, to such a stub is purely resistive,
or purely conductive, respectively, If this
input resistance is appreciably lower than the
characteristic impedance of the waveguide it
is called a resonant stub; if it is appreciably
higher than the characteristic impedance of
the waveguide it is called an antiresonant
stub. Similarly, if the input conductance is
appreciably higher than the characteristic
admittance of the waveguide the stub is
called a resonant stub, or if it is appreciably
lower the stub is called an antiresorant stub.

The combination of the electrical length of
a waveguide stub and its termination (open- or
short-circuited) determines whether it will
be resonant or antiresonant. In either case,
the electrical length of the stub must be an
integer number of quarter wavelengths. (See
Fig. 7.1.)

Near its resonant frequency the equivalent
circuit for a uniform waveguide stub is a series-
resonant circuif; near its antiresonant fre-
quency the equivalent circuit is a parallel-
resonant circuit.

The attenuation (one-way transmission loss)
of any uniform waveguide uniquely determines
the normalized resonant impedance or admit-
tance (Z, /Z, or Y__ /Y,) andfor the nor-
malized antiresonant impedance or admittance
\Zax/Zg OF Y. /Yy ) of stubs constructed
thereof. Thus
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Zoin Ymin  1log~'(dB/10Y - 1

- (7-1)
Z, Yy log L (dB/10) + 1
and
Z Y -1
max _ “max log™" (dBA1D) + 1 (7-2)
Zy Yo log™! (dB/10) - 1
fZ . < ZjandY ; <« Y,a good approxi-

mation for Eq. (7-1) is

zZ Y .

win " min ~ dB (7-3)
Z, Y,  8.686
Similarly, it Z_ > Zyand Y __ > Y, a
good approximation for Eq. (7-2) is
YA Y ,

max max ~ 8.686 (7_4)

z, Y, dB

Equation (7-3) is accurate to within 0.3
percent if the normalized resonant imped-
ance (Z_,./Zy) or antiresonant admittance
(Y _;,/Yy) is less than 1/30, and Eq. (7-4) is
accurate to within 0.3 percent if the normal-
ized antiresonant impedance Z o/ L OF 1850
nant admittance Y_, /Y, is greater than 30.

The shortest possible resonant or anti-
resonant waveguide stub is one-quarter wave-
length long. For a given size and type of
waveguide this length stub has the lowest
attenuation. As seen from Eq. (7-3} it will
therefore have the lowest resonant imped-
ance or admittance; or, as seen from Eq.
(7-4), it will have the highest antiresonant
impedance or admittance.

For example, a resonant waveguide stub
which is one-half wavelength long (short-
circuited at its far end) has twice the attenua-
tion of a resonant waveguide stub which is
a quarter wavelength long (open-circuited at
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its far end). For the same size and type of
waveguide the half-wavelength stub will there-
fore have a resonant impedance which is twice
as high as that of the quarter-wavelength
stub.

7.5 USES OF POLE REGION CHARTS

As previously stated, the charts of Figs.
7.4 and 7.5 are enlargements of the pole
regions of the SMITH CHART.

The chart of Fig. 7.4 is of particular use
for tracing the normalized input impedance
locus of waveguide stubs as a function of
frequency deviations from the resonant (mid-
band) frequency. Alternatively, it is useful
for tracing the normalized input admittance
locus of stubs as a function of frequency
deviations from the antiresonant (midband)
frequency.

Similarly, the chart of Fig. 7.5 is of partic-
ular use for tracing the normalized input
impedance locus of waveguide stubs as a
function of frequency deviations from the
antiresonant {(midband) frequency. It.is also
useful for tracing the normalized input admit-
tance locus of stubs as a function of frequency
deviations from the resonant (midband) fre-
quency.

The nearly horizontal dashed lines of Fig.
7.5 (omitted in Fig. 7.4 because they parailel
the lines of constant resistance and are there-
fore not necessary) are drawn as a convenience
in translating chart values of normalized imped-
ance or admittance to the nearly vertical
scale on the chart coordinates which indicates
deviation from the midband frequency.

On both Figs. 7.4 and 7.5 the stub attenua-
tion is indicated directly on scales across the
bottom. The scale values refer to the total
attenuation of a stub regardless of the number
of quarter wavclengths therein. To obtain a
value of @ from the @/n scales across the top
of either of these charts it is only necessary
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to multiply the @Q/n scale values by the

number n of quarter wavelengths in the stub.

Similarly, to obtain a specific value for Af from
the “percent off midband frequency” scale
(Af x n) at the side of these charts it is only
necessary to divide the scale values by the
nurnber » of quarter wavelengths in the stub.
The use of these charts is further illustrated
by an example: Assume that we have a wave-
guide stub which is one-quarter wavelength
long and short-circuited at its far end. Assume
also that the antiresonant input impedance of
the stub is known to be 200 times Z,, the
characteristic impedance of the waveguide, and
we wish to know its impedance at a frequency
0.5 percent off resonance. Since the stub is
only one-quarter wavelength long (n = 1),
enter the chart of Fig. 7.5 directly at 0.5
percent on the nAf scale. (Had the stub
been three-quarter wavelengths long (n = 3),
for example, the chart would be entered at

3 x 0.5 percent or 1.5 percent on this scale.)
Erect a perpendicular to the chart perimeter
through the 0.5 percent point on the nrAf
scale and extend it to intersect the nearly
vertical dashed curve which passes through
R/Zy= 200. At this latter point on the chart
coordinates the impedance in complex nota-
tion is found to be (58 - j 90) Z;, and the
absolute magnitude is the square root of the
sum of the squares or 107 Z;,. This procedure
is repeated to obfain as many data points on
the impedance-frequency relationship as de-
sired. The result, in the example given, is a
plot as shown on Fig. 7.6,

If it is found that the range of the chart
is too small it may be extended, within limits,
by multiplying the scales properly. For
instance, suppose that the antiresonant im-
pedance of the waveguide in question is
2,000 Z,. The “200” curve in Fig. 7.5 may be
used if the resistance and reactance circle
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Normalized input impedance vs. frequency of quarter-wave antiresonant stub as obtained from Fig. 7.5.




values (and the @/n scale values) are multiplied
by 10 and the “percent off midband fre-
guency™ (nAf) scale is divided, i.e., expanded,
by 10. This can be checked by noting that the
impedance point (50 - j 50) Z, occurs at 0.64
percent off resonance while the point (500 -
j 500) Z, occurs at 0.064 percent off reso-
nance. The range of the “percent off midband
frequency™ scale may be increased a limited
amount by division of the resistance and
reactance circle values. Caution must be
used, however, as the errors may be large if
the extension is carried too far. Figure 7.5
is similarly used for obtaining the input
admittance characteristics of stub waveguides
at frequencies near resonance.

7.5.1 Q of a Uniform Waveguide Stub

The @ of a uniform waveguide stub may be
defined as the ratio of its resonant or antireso-
nant (midband) frequency f;; to its bandwidth.
The bandwidth is defined as the total width
of the frequency band within which the real
part of the input impedance equals or exceeds
the imaginary part. This corresponds to the
half-power (3 dB) criterion for bandwidth of
conventional tuned circuits; thus

fo

= — (7-5)
handwidth

If the real part of the normalized resonant
input impedance or normalized antiresonant
input admittance (R _, /Z, or G_; /Yy) of
any uniform waveguide stub an integer number
n of quarter wavelengths long (including any
lumped resistive loading at either end) is less
than approximately 0.03, for which condition
Fig. 7.4 is apphlicable,

R. G
Inin min ~ E (?-6)
Z, ¥, 4Q
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Similarly, if the real part of the normalized
antiresonant input impedance or normalized
resonant admittance (Rmax/ZD or Gmax/YD)
of any uniform waveguide stub is more than
approximately 30.0, for which condition Fig.
7.5 is applicable,

= z = (7-7)

Along any lossless uniform waveguide
R nin/Zo OF G /Y, are the reciprocal values
forR_  /ZyorG_. /Y, respectively. Further-
more, all pairs of reciprocal relationships when
plotted on a SMITH CHART are at equal
radius along the real axis. Thus a single scale
for Q/n is applicable to both Figs. 7.4 and
7.5.

In the example given, the antiresonant
impedance of a stub one-quarter wavelength
long (n = 1) was assumed to be 200 Z;. Its
@ is determined by projecting this antireso-
nant impedance value vertically along the
dashed line to the @/n scale where it is found
to be 157.

7.5.2 Percent Off Midband Frequency
Scales on Pole Region Charts

Peripheral scales in Figs. 7.4 and 7.5 in-
dicating ‘“‘percent off midband frequency”
show specific values of the function
100 nAf/f,, where Af is the frequency devia-
tion from the resonant or antiresonant (mid-
band) frequency.

It is possible to plot such scales on these
charts since this function is linearly related to
the electrical length of the waveguide stub
which is a linear radial parameter on the
SMITH CHART. If, for example, the fre-
quency of operation of a stub one-quarter
wavelength long is changed 1 percent, from
fo to fy = Af, the electrical length of the
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stub is changed 1 percent of one-juarter
wavelength, or + 0.0025 wavelength., If the
stub were three-quarter wavelengths long,
this 1 percent frequency change would result
in a stub length change of 3 x + 0.0025 wave-
length, and so on. The percent off midband
frequency scales in Figs. 7.4 and 7.5 read
directly for one-quarter wavelength stubs. For
use at other stub lengths the scale values must
first be divided by #.

7.5.3 Bandwidth of a Uniform
Waveguide Stub

From Eq. (7-5) it will be seen that the @ of
a uniform waveguide stub is simply its mid-
band frequency divided by its bandwidth.
Thus its bandwidth is its midband frequency
divided by Q. In the foregoing example, the
@ of the one-quarter wavelength stub was
157; its bandwidth is, therefore, 1/157 =
0.636 percent.

The band edges are equally- removed on a
percentage basis from the midband frequency;
thus they occur in the above example at
+ 0.318 percent. At the band edge fre-
quencies, the stub input resistance and reac-
tance is equal by definition. This may be
checked by projecting these peripheral scale
values (+ 0.318 percent) nearly horizontal
(parallel to the dashed lines) to the points
where they intersect the nearly vertical dashed
line passing through the antiresonant imped-
ance value of 200 Z;,, at which points the
impedance values (100 £ j 100) Z, will be
found.

7.6 MODIFIED SMITH CHART FOR
LINEAR SWR RADIAL SCALE

The chart shown in Fig. 7.7 is one of the
many possible nonconformal transformations
of SMITH CHART coordinates. Historically

this chart, developed in 1936, was the first
SMITH CHART. Although difficult to draw,
the chart offers at least one significant advan-
tage, in plotting data involving small standing
wave ratios, over the conventional chart, viz.,
the region near its center is expanded in re-
lation to the overall size of the chart. For
the same overall chart diameter standing
wave ratios up to 1.5 occupy an area 2.86
times as large as that occupied for this same
standing wave ratio on the more easily drawn
conventional SMITH CHART coordinates.

7.7 INVERTED COORDINATES

Another unorthodox method for achieving
an expansion of the central area of the SMITH
CHART is to invert the coordinates about the
dotted line in Fig. 7.1, where the reflection
coefficient magnitude equals 0.5. An inverted
coordinate SMITH CHART is shown in skele-
ton form in Fig. 7.8.

All radial scales of the original chart (such
as Fig, 3.3) remain unchanged but read in the
opposite direction. The peripheral scales,
their designations, and their sense of direction
also remain unchanged. The large outer area
of the inverted SMITH CHART coordinates
represents an area of small reflection coeffi-
cients (standing wave ratios near vnity). Points
on the perimeter of the inverted cocrdinates
represent a matched impedance termination.

Figure 7.9 shows a complete inverted
SMITH CHART [14] with a finer coordinate
grid structure than that shown in Fig. 7.8.
The radial scales at the top of this figure are
identical to those shown in Figs. 3.4 and 4.1
except that they are inverted and their lengths
are reduced to correspond to the inverted
chart radius.

Although inverted SMITH CHART coordi-
nates may have advantages in special applica-
tions, they have several disadvantages. One
of the disadvantages is that the families of
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impedance or admittance component curves
of the inverted SMITH CHART are not circles
as on the conventional chart of Fig. 3.3, and
they are not orthogonal families of curves;
consequently, like the chart of Fig. 7.7, it is
not easy to draw. Also, the magnitude of the
reflection coefficient (or of the standing wave
ratio), which is measured from the perimeter
of the chart toward the center, is not expanded,
whereas the phase angle of the reflection
coefficient is highly expanded. For these

reaseons inverted coordinates for the SMITH
CHART are not generally useful.

The later coordinate transformations illus-
trate only two of many possible nonconformal
transformations which may have special appli-
cations. In each of these, the circular orthog-
cnal SMITH CHART coordinates are trans-
formed into noncircular nonerthogonal
coordinates which are difficult to construct
and therefore not likely to achieve widespread
use.




8.1 GRAPHICAL REPRESENTATION OF
REFLECTION AND TRANSMISSION
COEFFICIENTS

Numerous attempts have been made to find

a simpler grid [125] than that of the
SMITH CHART on which waveguide trans-
mission and reflection functions could be
displayed. This chapter presents one solution
to the problem which does not alter the basic
SMITH CHART coordinates and which be-
cause of its inherent simplicity has certain
practical advantages.

8.1.1 Polar vs. Rectangular Coordinate
Representation

Polar coordinates are generally chosen to
graphically portray the voltage and curmrent
reflection and transmission coefficients along
a waveguide as shown in Figs. 8.1 and 8.2, and
as described more fully in Chaps. 3 and 5,
respectively. Their component values (magni-
tude and phase) are directly related to the
voltage and current at any position along a

CHAPTER 8

Waveguide
Transmission
Coefficient 7

standing wave which can readily be observed
and measured. Accordingly, they have a
well-defined physical significance. It is not
the purpose of this chapter to depreciate the
polar coordinate representation of these coef-
ficients since this is extremely useful, but
rather to show how an alternative rectangular
coordinate representation can offer simplifi-
cations and advantages in some applications.
This chapter will also show how the trans
mission coefficient components (both polar
and rectangular) can be represented on the
SMITH CHART in a manner which will not
obscure the basic impedance or admittance
coordinates with additional superimposed
curves.

Any vector can, of course, be graphically
represented on either polar or rectangular co-
ordinates. For the specific representation of
the reflection and transmission coefficients
the use of rectangular coordinates makes it
possible to employ a single rather than a dual
set of coordinates. This single set serves,
alternatively, to represent either of these coef-
ficients as they coexist at all positions along a
waveguide.  Furthermore, the rectangular

87
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Fig. 8.1,

Vol refl, coeff.—polar coord.

component values of each of these coef-
ficients are mathematically more simply re-
lated to each other, and to the impedance
or admittance coordinate components of the
SMITH CHART, than are the polar component
values; also, as with polar coordinates, they
are fully compatible with the SMITH CHART
coordinates and therefore can be used as an
overlay thercon. Evaluation of these coeffi-
cients in terms of their rectangular compo-
nents provides the data necessary to generate
a spot or a trace on conventional cathode ray
tubes, and on mechanical (x,y) curve plotters.
Finally, such a waveguide chart can be con-
structed with ordinary cross-section paper
available to any engineer.

8.1.2 Rectangular Coordinate Representa-
tion of Reflection Coefficient p

If the voltage reflection coefficient whose
polar magnitude ranges between O and 1.0,
and whose phase angle ranges between 0 and
+ 180° (see Fig. 8.1), is expressed in equiva-
lent complex notation, it can then be plotted
on rectangular coordinates as shown in Fig.
8.3. In the latter plot the X component
ranges uniformly from—1.0 to+ 1.0, and the Y

Fig. 8.2. Vol. transm. coeff.—polar coord.

component ranges uniformly from +; 1.0 to
- j 1.0. As in the polar representation, the
zero value for this coefficient (no-reflection
point) lies at the center of the plot.

The same radial scale as used on polar
coordinates, representing the magnitude of
the voltage reflection coefficient, and ranging
from O at the center of the chart to 1.0 at its
periphery, is applicable to the equivalent
rectangular coordinate representation. Also,
the same peripheral scales, representing the
phase angle of the voltage reflection coeffi-
cient and the relative positions along the wave-
guide, are applicable thereto. Thus, the rec-
tangular coordinate representation of Fig. 8.3
is directly applicable as an overlay for the

more usual polar coordinate representation of
Fig. 8.1.

8.1.3 Rectangular Coordinate Representa-
tion of Transmission Coefficient 7

In a manner somewhat analogous to that
described above for the voltage reflection
coefficient the voltage transmission coeffi-
cient, whose polar magnitude ranges between
0 and 2.0 and whose phase angle ranges from
+ 90 to — 90° (see Fig. 8.2), may be expressed
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in equivalent complex notation and then
plotted on rectangular coordinates, as shown
in Fig. 8.4. [In this latter plot, however, the
X component ranges uniformly from 0 to + 2.0,
and the Y component ranges uniformly from
+ j1.0 to —j 1.0. As in the polar representation
of the transmission coefficient, and in both
polar and rectangular representations of the
reflection coefficient, the no reflection point
lies at the center of the respective circular
plots.

The magnitude scale for the voltage trans-
mission coefficient, whose zero value lies on
the rim of the chart at the origin of the polar
coordinates (see Fig, 8.2), is similarly appli-
cable to the equivalent rectangular represen-
tation, and its zero value also lies at the origin
of these latter coordinates. Asin the case for
the reflection coefficient, the peripheral angle
scale representing the phase angle of the volt-
age transmission coefficient (referenced to the
origin of the polar coordinates at the periphery
of the chart) is applicable to this rectangular
representation. Thus, the rectangular coordi-
nate representation for the transmission coef-
ficient in Fig. 8.4 js directly applicable as an
overlay for the polar coordinate representation
of Fig. 8.2,

+iN

+jl.5 \

NI

Fig. B.3. Vol refl, coeff.—rect. coord.

8.1.4 Composite Rectangular Coordinate
Representation of p and 7

It will be noted from Figs. 8.1 and 8.2
that, in polar form, the coordinate grids for
the voltage reflection and transmission coef-
ficients are not coincident with each other
(one being displaced with respect to the other
by the chart radius), while in the respective
rectangular forms (Figs. 8.3 and 8.4) the
coordinates, per se, are one and the same—
the difference in this latter case being that
the labeling thereon is differeat for the
reflection and for the transmission coeffi-
cient real parts. Thus, a composite represen-
tation of those two coefficients on a common
rectangular grid is possible in this case. Figure
8.5 shows a mutually compatible coordinate
grid for both reflection and transmission
coefficients p and r, respectively. Radial and
peripheral scales of the SMITH CHART
relate points on this common grid to the
standing wave ratio and wave position, and
to other uniquely related gnided-wave param-
eters, each of which has been discussed
individually in previous chapters.

Through a comparison of the geometry of
any common point on the polar coordinates

[=]

AN

Vol. transm. coeff.—rect. coord.

Fig. 8.4.
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of Figs. 8.1 and 8.2 it will be seen that in
polar form the magnitudes and phase angles
of p relative to r are given by the following
quadratic trigonometric equations, as was
further described in Chap. 35, viz.,

r - Vo + 2 cosa + 1 (8-1)
p = V2 — 2 cosp i 1 (8-2)
B - tanl P SMa (8-3)

pcosa + 1

rsinf (8-4)
reosf3 -1

a = tan~!

where r and p are the magnitudes, and 8 and
a are the respective phase angles, of the volt-
age transmission and voltage reflection coef-
ficients, respectively, and in which 0 < > 2,
andQ = p 2> L

On the rectangular coordinates of Figs.
8.3 and 8.4, and on the composite rectangular
coordinates of Fig. 8.3, the same relationships
are given by two simple linear equations, viz.,

e =yt 1 (8-5)
and
TY = pY (8‘6)

where the subscripts X and Y indicate real and
imaginary components, respectively, of the
respective vector coefficients » and p, and in
which -1 < ry0r py) 2 +1.

From Eqs. (8-5) and (8-6) one observes the
interesting fact that the real components
of r and p invariably differ by unity, and the
imaginary components are invariably equal
to each other at any given position along a
waveguide.

The conversion of the component values of
p to equivalent normalized waveguide complex
input impedances is possible by virtue of the
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well-known vector relationship which plots
the SMITH CHART

7 - (8-7)

where Z is the normalized complex input
impedance and p is the complex voltage
reflection coefficient.

The relationships expressed by Eqs. (8-1)
through (8-6) are consistent with accepted
definitions [11] for the voltage transmission
coefficient and the voltage reflection coeffi-
cient (in a transmission medium), as applied
to a transmission line or waveguide.

8.2 RELATION OF p AND 7 TO SMITH
CHART COORDINATES

The SMITH CHART of Fig. 8.6 includes
the basic impedance or admittance coordi-
nates, shown in Fig. 2.3, with the addition of
four peripheral scales. The two outermost
of these scales indicate the relative position
along the waveguide in either direction from
a voltage null position, and the two innermost
scales indicate the angle of the reflection coef-
ficient and the angle of the transmission
coefficient, as plotted in polar form. As
discussed in Chap. 5, when the SMITH
CHART is used to represent impedances the
peripheral reflection coefficient angle scale
thercon refers to the voltage reflection coeffi-
cient and when this chart is used to represent
admittances this scale refers to the current
reflection cocfficient. The same rule applies
to the peripheral transmission coefficient
angle scale in Fig. 8.6. A rotation of either
of these scales about the center of the chart
reverses its application, i.e., the scale will then
apply to current as related to the impedance
coordinates or voltage asrelated to admittance
coordinates,
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Across the bottom of Fig. 8.6 all of the
radial scales described in previous chapters are
displayed. Also displayed is a polar coordinate
transmission coefficient magnitude scalec meas-
uring in all cases from the origin of the
coordinates.

The rectangular coordinates for p and r
described in this chapter can be added to
Fig. 8.6 to produce the composite chart of
Fig, 8.7, This addition involves only rectan-
gular coordinate component scales for p and
7, to which points on the chart coordinates
can readily be projected. The superposition
of Figs. 8.5 and 8.6 to produce Fig. 8.7 is
thus in effect accomplished without confusing
the basic impedance or admittance coordi-
nates.

As was the case with the polar coordinate
scales, the rectangular component scales for
p and r apply to voltage reflection and trans-
mission coefficients in relation to impedance
coordinates and to current reflection and
transmission coefficients in relation to admit-
tance coordinates; and a rotation of either of
these latter scales through 180° about the
center of the chart reverses its application.

8.3 APPLICATION OF TRANSMISSION
COEFFICIENT SCALES ON SMITH
CHART IN FIG. 8.6

An example of the application of the polar
coordinate transmission coefficient scales in
Fig. 8.6 is shown in Fig. 8.8(a), which is a plot
of the amplitude and phase of the voltage or
current transmission coefficient attending a
standing wave whose ratio is 3. The plot of
this cocfficient is identical to that of the
standing wave.  Figurc 8.8(b) shows an
equivalent plot for the rectangular com-
ponents X and Y. If the rectangular com-
ponent values X and Y of the voltage or
current transmission coefficient r are known,
the polar magnitude is readily obtained from

7] = (X2 4 Y2 (8-8)
and the polar angle from

éﬁ - tan!

| bt

(8-9)
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Fig. 8.8. Polar and equivalent rectangular components of
waveguide transmission coefficient for SWR = 3.0.

The X- and Y-component curves (Fig.
8.8(b)) are seen to have identical shapes which
are sinusoidal regardless of their maximum and
minimum amplitude value, whereas the shapes
of the amplitude and phase component curves
(Fig. 8.8(a)) are a function of the magnitude
of the SWR to which they apply, and approach
sinusoidal shapes only when the SWR ap-
proaches infinity. Furthermore, X- and Y-
component curves are always displaced, one
from the other, by 45° and consequently may
be drawn by inspection, whereas the displace-
ment of the amplitude and phase curves of
Fig. 8.8(a) varies with the SWR between the




limits of 0 and 90°. Thus when the transmis-
sion coefficient is expressed in rectangular
components a simple sine function plot of
the standing wave ratio serves to display the
shape of the X- and Y-component curves for
a current or voltage standing wave of any
ratio of maximum to minimum (SWR).

8.4 SCALES AT BOTTOM OF SMITH
CHARTS IN FIGS. 8.6 AND 8.7

The linear scale representing the voltage or
current transmission coefficient magnitude,
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which stems from the origin of the coordinates
of the SMITH CHART, was seen to be related
to both the magnitude and the angle of the
voltage reflection coefficient by Eq. (8-1).

All of the remaining radially scaled param-
eters are related by simple algebraic formulas
to the magnitude only of the voltage or cur-
rent (1)} reflection coefficient, (2) standing
wave, and (3) fraveling waves. While these
relationships have been discussed individually
in previous chapters for convenience, the
formulas are grouped in Table 8.1.

Table 8.1. Waveguide Transmission—Reflection Formulas

TRANSMISSION — REFLECTION FORMULAS

SCALE FUNCTION TRAVELING WAVES REFLECTION STANDING WAVES
r s—1
{1) |VYOLTAGE REFL. COEF. T P —
r 42 s—1 42
{2) |POWER REFL. COEF. (i—) p2 ( o )
{3) |RETURN LOSS, dB 1010910 (L)% -10 log|g P2 10 logjo ( 321y
TV 101557
iz 1.2
{4) | REFLECTION LOSS, dB 10 logyp Y -10 log 1o {1-£2) | -1010g I0[|' §+: ) ]
[(i-n-r)/(i-r]]2 [-P+p2_p3 2
{5) | STDG. WAVE LOSS COEF| 1+ L [ ;-Ss
2[{I+r)/(l-r’] I-p—p=+p
i+t i
(6} |STDG.WAVE RATIO,dB | 20 logjg —— 20 log|o% 20 log|o §
(7) | MAX. OF STDG. WAVE % 72 (_P_:*' )72 V5
[
j—r 1/2 1— /2 e
{8} | MIN. OF STDG WAVE {+3r) (_£| 5 ) JE
{9) [STANDING WAVE RATIO B —ﬂ: +P $
(10) | ATTENUATION, d& ~10 Iogj0 - —10 togi0 p -10 logig 5_:‘|

i= INCIDENT WAVE AMPLITUDE
r= REFLECTED WAVE AMPLITUDE VOLJ:GE

£ = REFLECTION COEFFICIENT

5= STANDING WAVE RATIC

CURRENT






9.1 STUB AND SLUG TRANSFORMERS

As discussed in previous chapters, a mis

match between the load impedance and the
characteristic impedance (or between the load
admittance and the characteristic admittance)
of a waveguide or transmission line causes a
reflection loss at the load and increased dissi-
pative losses along the entire length of the
line. Also, a mismatch termination causes the
transmission phase to vary nonlinearly with
changes in frequency or line length, and in-
creases the tendency of the waveguide or line
to overheat and arc over at the cumrent and
voltage maximum points, respectively, when
operating under high power.

Several commonly used devices for obtain-
ing a match at the load end of a transmission
line will be described in this chapter. These
include the single and the dual matching stubd
[65], and the single and the dual matching
slug transformers. Matching stubs or building-
ouft sections, as they are sometimes called, are
sections of transmission line, frequently of the
same characteristic impedance (or character-
istic admittance) as that of the main line,

CHAPTER 9

Waveguide
Impedance and

Admittance Matching

and either open- or short-circuited at their
far end, connected in shunt with the main
line at any one of several permissible po-
sitions in the general location where it is
desired to provide the match. Slug trans-
formers, on the other hand, are sections of
line of appropriate characteristic impedance
(or characteristic admittance) and length con-
nected in series with, and forming a con-
tinuation of, the main line.

These devices are described in some detail
herein since it is through its terminations
alone that the transmission characteristics of
waves along any given waveguide can be con-
trolled. Furthermore, the SMITH CHART
provides the ideal medium for visualization of
the principle of operation of such transformers
and for quantitatively determining their spe-
cific design constants.

9.2 ADMITTANCE MATCHING WITH A
SINGLE SHUNT STUB

The single open- or short-circuited shunt
matching stub whose length is continuously

7
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adjustable over a range of one-quarfer wave-
length, and whose position along the main
line is adjustable over a range of one-half
wavelength, is capable of correcting any mis-
matched condition whatsoever along the main
line [8].

For its principle of operation refer to the
SMITH CHART of Fig. 9.1. Therein it will
be observed that the circle of unit conduct-
ance (C, A, P,B) passes uninterruptedly
through both the center and the periphery of
the admittance coordinates, at points C and
P, respectively, and is centered on the zero-
conductance axis. Thus two admittances,
such as at points A and B, of equal magni-
tudes and of opposite sign, whose normalized
conductance component is unity, always co-
exist within a quarter wavelength of cach
other along any transmission line regardless
of the extent of the mismatch. At either of
those positions a susceptance, whose magni-
tude is equal to that of the input susceptance
but of opposite sign, can be shunted across
the main line to cancel the main line suscep-
tance, and thereby provide a match (unit
conductance) for that section of the main
line between the point of attachment of the
stub and the generator end of the line.

Although the susceptance provided by a
reactive circuit element will of course serve
the purpose, a short-circuited or an open-
circuited stub transmission line of suitable
length in relation to its chosen characteristic
admittance provides a practical, convenient,
and controllable shunt susceptance. This
matching principle is made use of in the so-
called slide-screw tuner often used in micro-
wave plumbing.

9.2.1 Relationships between Impedance
Mismatch, Matching Stub Length,
and Location

For a short-circuited matching stub of
characteristic impedance Z,, in shunt with a

main line of characteristic impedance Zy, the
relationship between its required length L, the
distance ) toward the generator from avoltage
maximum position along the main line (at
which position the stub must be attached),
and the standing wave ratio § are given by [8]

[Zos/2Zg) tan el 70 g 4 j tan (24D /M)
1 + jS tan(27D/A)

(9-1)

(Zy,/Zg) + j tan(@aL/A)

in which A is the wavelength.
Similarly, for an open-circuited stub line,
the relationship is

-_-j(ZOS/ZO) cot. (271 /) S + jtan(2aD/A)
1 4 jS tan(2rD/X)
(9-2)

(Zy,/Z¢) — j cot(2aL/A)

The two possible positions within each half
wavelength of main line for matching stubs,
which are always located at equal distances I
but in opposite directions from a voltage
maximum (and therefore minimum) position,
are a function only of the standing wave ratio
S, as can be seen from Fig. 9.1. The “for-
bidden™ stub locations in Fig. 9.1 within
one-eighth wavelength of either side of a
voltage maximum point correspond to the
positions along the line where no shunt sus-
ceptance can provide a matched condition.

The mathematical relationship between D
and S is simply

tan 270 _ ()12 (9-3)
A

The required length for a matching stub for
a given value of S will depend upon whether a
short-circuited or an open-circuited stub is to
be used. The lengths of these two possible
stub types will also depend upon the selected
ratio of Z, to Z, Stub lengths less than
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one-quarter wavelength are generally preferred
10 equivalent stub lengths an integral number
of half wavelengths longer since the shorter
stub provides the wider operating bandwidth,
Also the characteristic impedance of the stub is
frequently made the same as that of the main
line, so that the relationship between f.7and §
as derived from Eqgs. (9-1) and (9-2) is inde-
pendent of the characteristic impedances of
either the main line or the stub, in which
case Eq. (9-1), for the shorted stub, reduced to

j tan (el /) S ¢ jigl2
= (9-4)

1+ jtan(@L/Y) 14 jS(§)V2

in which L is the required length of stub of
characteristic impedance Z,. Similarly, Eq.
(9-2), for the open stub, reduces to

~ jeot2al/A) _
1 - jecot{2zL/A)

S + j(§1/2
1+ jS(9H2

(9-5)

Because of frequency dispersive effects a
single stub is capable of providing a perfect
impedance match only at a single frequency.
However, for the applications in which radio
frequency lines are generally employed, the
operable bandwidth of a single stub matching
transformer is generally adequate. Broader
operating bands can be obtained through the
use of two or more stages of impedance trans-
formation which can be provided by the use
of multiple stubs. In this latter case each
stub may be adjusted to provide an incre-
mental share of the overall match. A suffi-
cient number of stubs may thus be used to
achieve the desired bandwidth.

9.2.2 Determination of Matching Stub
Length and Location with a
SMITH CHART

The SMITH CHART in Fig. 9.1 will serve
both to describe generally and to illustrate

specifically the method for determination
of stub length and position directly from 3
SMITH CHART.

1. Draw a circle, centered on the chart
coordinates, whose radius corresponds to the
standing wave ratioc S on the main line.
(Example: S=4.0)

2. Draw two radial lines each of which
intersects the circle G/Y, = 1.0, and note
the values at the intersection of these lines
with the outer wavelength scale. (Example:
0.176 wavelength at 4, and 0.324 wavelength
at B.) These are the two locations “toward
the generator” from a voltage maximum
position where a matching stub can be located.

3. The intersections of the radial lines with
the susceptance circles where they intersect
the unit conductance circle is then followed
out to the rim where the inner wavelengths
scale values are noted. (Example: 0.344
wavelength at A and 0.156 wavelength at B.)
These are the lengths of open-circuited stubs
which may be placed at the positions 4 and
B, respectively, to provide an admittance
match.

If short-circuited stubs are desired, their
equivalent length is obtainable by adding
or subtracting one-quarter wavelength from
the length required for the open-circuited
stubs. Example: short-circuited stubs should
be 0,344 + (0,25 = 0.094 or 0.594 wavelength
long at A or 0.156 £ 0.25=-0.094 or 0.406
wavelength long at B, In this latter case the
negative stub length is of course impossible
and must be discarded as a possible choice.

9.2.3 Mathematical Determination of
Required Stub Length of Specific
Characteristic Impedance

The required length of a matching stub as
determined in (3) above is for a stub whose
characteristic impedance is the same as that
of the main line. If the stub has a different
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characteristic impedance its required length
will be different from the values indicated
above but of such length as will provide the
same absolute input reactance. The mathe-
matical determination of stub lengths of
different characteristic impedance from that
of the main line which will provide equiv-
alent absolute input reactance can be shown
as follows:

The absolute input reactance X of any
lossless short-circuited stub line is

X = jZ, tan — (9-6)
and that of any lossless open-circuited line is

X = ~jZg, cot 2T
A

(9-7)

Designating:

L = length of stub of characteristic impedance
Zy

L’ = length of stub of characteristic impedance
Z(}s

X = absolute input reactance of stub of char-
acteristic impedance Z,

X’= absolute input reactance of stub of char-
acteristic inpedance Z;

we may write, for the case of short-circuited
stubs,

2nl.” (9-8)

and for the case of open-circuited stubs,

-iZ, t::ot;zz—L _— cot% (5-9)

We also note that in any particular problem
" the ratio Zy/Z;_ is a constant K. Thus, the
ratio of the lengths of two short-circuited

stubs which have the same input reactance
can be obtained from

tan(2rL /M)
tan (2xL/\)

=K (9-10)

from which

Lo 1, 1 tan(@el/A)

A 2n K

(9-11)

and similarly the ratio of the lengths of two
open-circuited stubs which have the same
input reactance can be obtained from

cot (ZmL/A) - K (9-12)
cot(2=L 7\

from which

L’ _ _1__ cot-1 cot{27L /A) (9-13)
A 27 K

As an example, the open-circuited stub re-
quired at B in Fig. 9.1 has the same character-
istic impedance as that of the main line and
was determined from this chart to be 0.156
wavelength long. If the characteristic imped-
ance of another stub which it may be desired
to use is 1.25 times that of the main line,
that is, K = 1.25, we obtain the required new
length L’ by substitution of the above values
in Eq. (9-13); thus

L° = 0.172x (9-14)

9.2.4 Determination with a SMITH CHART
of Required Stub Length of Specified
Characteristic Impedance

A method of finding stub lengths of differ-
ent characteristic impedance having equivalent
input reactance by means of the SMITH
CHART can be shown by use of the above
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example. The required length of an open-
circuited stub of characteristic impedance
equal to that of the main line was found to
be 0.156 wavelength, and it was desired to
find the length of a stub whose characteristic
impedance was 1.25 times that of the main
line which would have the same absolute input
reactance. Proceed as follows:

1. Enter the SMITH CHART (Fig. 8.6) at
the open-circuit position on the impedance
coordinates, where R/Z; = «.

2. Move “toward the generator” (.156
wavelength (to the outer wavelengths scale
position, 0.156 + 0.25 = 0.406 wavelength)
and observe at the perimeter of the impedance
coordinates that the input reactance of the
stubis-j0.67 Z,.

3. Divide -j 0.67 Z, by 1.25 to obtain-j
0.536 Z,,, which is the input reactance of a
stub of the desired characteristic impedance
having this same length.

4. Move to new position at 0.536 at the
periphery of the coordinates and observe a
new required stub length of characteristic
impedance Z{)s to be 0.172A40.422 A - 0.251),
which checks the value obtained in Eq. (9-14).

A summary of the several relationships
described ahove between stub position D, stub
length L, standing wave ratio 8, and type of
stub (short-circuited or open-circuited) is
provided in Fig. 9.2. Figure 9.2 can be
plotted point by point from data obtained
from the SMITH CHART of Fig. 9.1 by
the method described above. For convenience
in plotting, the standing wave ratio scale in
Fig. 9.2 corresponds to that on the SMITH
CHART in Fig. 9.1.

9.3 MAPPING OF STUB LENGTHS AND
POSITIONS ON A SMITH CHART

Figures 9.3 and 9.4 are overlays for the
SMITH CHART impedance or admittance
coordinates. The curves thereon show loci

of constant required stub lengths and distances
of attachment of the stub, toward the genera-
tor, from the load terminals. Figure 9.3
applies to short-circuited and Fig. 9.4 to
open-circuited matching stubs, respectively.
For the lengths indicated, the stubs must have
the same characteristic impedance or character-
istic admittance as that of the main line. If
this is different, the stub length must be such
as will provide the same absolute input re-
actance as that of the specified stub, in
accordance with methods previously outlined.

If the normalized complex load impedance
or load admittance is known, these curves
make it possible to directly determine the
required point of attachment of the stub,
without reference to the voltage minimum
position along the main line.

Figures 9.3 and 9.4 can be overlaid directly
on the impedance coordinates of Charts A,
B, or C in the cover envelope. When overlayed
on the admittance coordinates of these latter
charts they must first be rotated through an
angle of 180°.

9.4 IMPEDANCE MATCHING WITH
TWQ STUBS

Two stubs, each of which is adjustable in
length and fixed in position along a trans-
mission line, may be used in lieu of a single
stub which is adjustable in length and position,
to provide a general-purpose impedance match-
ing device. If each of these two stubs is per-
mitted to be either open-circuited or short-
circuited at its far end and separately adjustable
in length over a range of one-half wavelength,
the combination will provide the means for
matching the characteristic impedance of the
main line to the impedance of the load within
a specified range of load impedance values
on the SMITH CHART.

The matching capability of such a pair
of stubs is a function of the stub spacing
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Fig. 8.2, Allowable locations and lengths of a single shert-circuited, or open-circuited, matching stub,

only and can be represented on the SMITH
CHART of Fig. 9.5 as a family of “for-
bidden” areas each of which corresponds
to a specific spacing. In Fig. 9.5 two such
families are shown, one representing forbidden
admittances and the other equivalent forbid-
den impedances.

Should the load normalized impedance
Zp/Zy or admittance Yp/Y, of a two-stub
matching circuit fall within their respective for-
bidden areas no adjustment of the two stubs is
possible which will provide a match. However,
if the two stubs are moved as a pair along the
same transmission line in either direction a
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distance of one-quarter wavelength, the load
impedance will then fall outside of the for-
bidden area and an adjustment of the stub
lengths will be possible which will provide the
match.

An example of a typical problem is indicated
in Fig. 9.6 for a stub spacing of one quarter
wavelength.

The point of entry to the SMITH CHART in
Fig. 9.6 is the normalized input admittance of
the transmission line at ¥,/¥,=0.4—;0.18, and
it can be seen that this occurs 0.216 wave-
length “toward the generator™ from a voltage
minimum point on the line. The transforming
effect of shunting Y,/Y, (see insert in Fig.
9.6) with an inductive susceptance B, whose
normalized value is -jB,/Y, = 0.31 is to
move Yy/Y, to the position Y,/Y;. The
additional transforming effect of the main
line section between the stubs S/x = 0.25
is to move Y,/Y; to the position Y,/Y,
on the unit conductance circle. Finally, the
transforming effect of shunting Y, = 1.0+j1.22
with an inductive susceptance B,, whose
normalized value —jB,/Y, = 1.22, is to move
. Y3/Yy to Y, = 1.0 £ j0, at which point the
desired match is accomplsihed.

In all cases, Y,/Y, must be on the unit
conductance circle, and the distance between
Y,/Y,andY,/Y,, as measured on the periph-
eral scales to which these points are projected
radially, must correspond to the spacing of the
stubs,

9.5 SINGLE-SLUG TRANSFORMER
OPERATION AND DESIGN

An clementary type of transmission line
impedance transformer consists of a one-
quarter wavelength section of transmission
line of appropriate characteristic impedance.
In operation such a transformer is always
inserted in the main line between a voitage
maximum and adjacent minimum as these
positions exist prior to its insertion. Such

positions along the line will provide input
and output tmpedances which are represent-
able on the SMITH CHART along the real
axis.

The characteristic impedance Z, of the
quarter-wave “slug” transformer must in all
cases be made equal to the geometric mean
between the characteristic impedance Z; of
the main line and the real impedance R,
at the load terminals of the slug. Thus

Zt
A (9-15)

From Eq. (9-15) it is seen that for a fixed
value of Z, only a single load resistance R, can
be transformed to Z,.

If the ratio Z,/Z, is between zero and unity
the load terminals of the transformer must be
positioned at the voltage (and consequently
impedance) minimum point along the line, in
which case the transformer will step up the
low impedance of its load to match the
characteristic impedance of the line. Con-
versely, if it is between unity and infinity
its load terminals must be positioned at a
voltage (and consequently impedance) maxi-
mum point, and it will then step down the
load impedance to match the line character-
istic impedance.

For a general-purpose matching device the
position of the quarter-wave slug transformer
must be continuously adjustable over a range
of one-half wavelength in order to ensure that
it can always be properly positioned with
respect to the standing wave which it is re-
quired to eliminate.

The design and operation of a single quarter-
wave transformer can be shown on the SMITH
CHART in Fig. 9.7 as follows:

1. Assume that a mismatched transmission
ling has a standing wave whose ratio § is
3.333. Draw the circle for § = 3.333 centered
on the chart coordinates, and note that this



108

ELECTRONIC APPLICATIONS OF THE SMITH CHART
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Fig. 9.7. I mpedance matching with a single quarter-wave slug transformer.
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circle intersects the real axis at points A and
B where R,/Z, = 0.3 and 3.333, respectively.
Assuming that it is desired to use a transfor-
mer which steps up the load resistance, select
the lower of these two possible values as the
load impedance for the transformer, that is,
R /Zy= 0.3 at point A.

2. Draw a construction line connecting
point € on the perimeter of the chart with
point A, and at its intersection with the S =
3.333 circle (point D) erect a perpendicular
to intersect the real axis of the chart at
point E. The required niormalized character-
istic impedance Z,/Z, of the slug transformer
is found, in this example, to be 0.547. (Had
a step-down transformer been selected the
normalized value of its characteristic imped-
ance would have been 1.83, as indicated at
the extremity of the dotted construction line
at point F. The results thus obtained will be
seen by inspection to satisfy Eq. (9-15),

9.6 ANALYSIS OF TWO-SLUG TRANS-
FORMER WITH A SMITH CHART

A more versatile matching circuit whose
design and performance characteristics are de-
scribed herein is the two-slug transformer. The
analysis of this transformer is catried out in a
specific example on the SMITH CHART of
Fig. 9.8.

The two slugs shown schematically in Fig.
9.8 are generally constructed in the form of
longitudinally adjustable enlargements of the
inner conductor diameter of a coaxial line,
as shown, or sleeve-type reductions of its ounter
conductor diameter. FEither case results in a
reduction of the characteristic impedance of
the line section occupied by the slug. Alter-
natively, the slugs may be constructed of a
dielectric material.

Given sufficient space along the line for
adjustment of slug position, this type of
transformer is capable of eliminating standing

waves of any amplitude ratio which does not
exceed its maximum design value, which value
depends only upon the fixed value of char-
acteristic impedance for the slugs.

Individual conducting slugs are frequently
made one-quarter wavelength long, and di-
electric slugs, which completely fill the space
between inner and outer conductor, are usu-
ally made mechanically shorter by the factor
1//e to take into account the reduction in
velocity of a wave in a dielectric material
whose dielectric constant ¢ is greater than
unity.

The two slugs are usually fixed in length
and in characteristic impedance for a partic-
ular application in accordance with a pre-
determined maximum standing wave matching
requirement. The slugs are adjustable along
the inner conducter (1) with respect to each
other, and (2) with respect to a fixed refer-
ence position along the line.

If minimum overall length of a two-slug
transformer is important in a given application,
one-quarter wavelength is not necessarily the
most desirable length for the individual slugs.
For this reason the analysis which follows
will consider slugs whose length ranges between
zero and one-quarter wavelength, and whose
characteristic impedance ranges between zero
and one times that of the main line, to deter-
mine how the overall matching capability is
related to these design variables. From this
data the range of transformable load imped-
ances for a given slug geometry as a function
of frequency may readily be found.

A specific combination of two identical
one-eighth wavelength-long slugs with a nor-
malized characteristic impedance Z,/Z; =
0.4 is represented by the construction in
Fig. 9.8. By a successive consideration of
other slug lengths and normalized character-
istic impedances by the same method, the
data in Fig. 9.9 is obtained. The use of
identical slugs in a two-slug transformer is
justified on the basis that it simplifies the
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analysis while still not restricting the method
of analysis for two slugs of arbitrary lengths
or characteristic impedances.

Let it be required to find the boundaries
of impedance areas on the SMITH CHART
which define the impedance transforming
capabilities of two-slug radio frequency imped-
ance transformers as a function of (1) the slug
length in wavelengths, (2) the ratio of char-
acteristic impedance of the slugs to the
characteristic impedance of the main line,
that is, Zt/‘ZO, (3) the spacing D between
slugs in wavelengths, and (4) the maximum
required overall length of slugs plus position
adjustments.

For the purpose of analysis the conditions
of the problem may be reversed and it may
then be assumed that the load is a constant
impedance which perfectly matches the nor-
malized characteristic impedance of the line.
The boundary of all possible input impedance
vectors for all possible slug positions is then
found. The principle of impedance conju-
gates may then be applied to the matching
problem, that is, for example, if a normalized
input impedance of 2.0 +j 4.0 falls within this
boundary of impedances which are available
at the input terminals, then this transformer
adjustment will provide a match for a normal-
ized load impedance of 2.0 —j4.0. The input
SWR for the conditions calculated will be the
same as the output SWR in the actual case. It
will be found that in all cases the matchable
impedance area is bounded by a circle centered
at Z,.

9.7 DETERMINATION OF MATCHABLE
IMPEDANCE BOUNDARY

1. On the circular transmission line imped-
ance chart (Fig. 9.8) draw a circle centered at
Zy cutting the R axis through the value
assigried to Z,/Z,, assumed in this example

to be 0.4. This is the locus of impedances
along that slug which is nearest to the load,
normalized with respect to Z,. Label the load
(maximum) impedance point Z, /Z,.

2. Lay off the point Z,/Z, on this circle at
a distance of 0.125 wavelength, corresponding
to the length of a single transformer slug in
wavelengths towards generator, i.e., clockwise
from point Z,/Z,.

3. Normalize Z, with respect to Z;, by
multiplying each component of the complex
impedance Z,/Z,, that is, 0.62 —j 0.72, by
the numerical ratio, 0.4, which was assigned
to Z,/Zy,. Plot the resulting point, that is,
0.276 —j 0.288, at 7, /Z.

4. Draw a circle centered at Z; and passing
through Z,/Z,. This is the locus of impedances
Zg/ Zas the separation of the slugs is changed.

5. Normalize the above Jocus circle Z4/Z,
with respect to Z,, that is, find the locus of
Z4/Z,, by dividing each component of each
complex impedance value Zy4/Zy on the pe-
riphery of this locus circle by the numerical
ratio assigned to Z ,/Z,,.

6. Rotate the locus circle Z;/Z, clockwise
about point Z; by an amount corresponding
to the length of a single transformer slug, that
is, 0.125 wavelength, to obtain the locus of
Z,/7,

7. Normalize and replot the above locus
circle Z,/Z, with respect to Z,, that is, find
the locus of Z,/Z,, by multiplying each
component of each complex impedance value
Z,/Z, on the periphery of this locus circle
by the numerical ratio assigned to Z,/Z,, that
is, 0.4.

8. Draw a circle representing the Z,/Z,
boundary. This circle is centered at Z; and
is tangent to the outermost point of locus
circle Z,/Z,. It will be observed from Fig.
9.8 that the locus of Z,/Z, 1s a circle passing
through unity (the center point of the SMITH
CHART).

This, in effect, states that regardless of the
slug length or slug characteristic impedance,
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it is always possible to find a slug spac-
ing such that the reflection introduced by
one slug just cancels that from the other.
The result is an overall 1/1 impedance trans-
formation and the slug spacing required is
such that Z,/Z, and Z4/7, are conjugate.
Any departure in slug spacing in either
direction from the spacing which results
in a 1/1 impedance transformation introduces
a standing wave of some amplitude ratio other
than unity. The maximum amplitude of this
standing wave isreached when the slug spacing
departs from the above setting by a quaiter
wavelength. The position of the standing wave
introduced by the slugs is adjusted with

13

respect to any arbitrary fixed reference point
along the line by sliding the slugs as a pair
(maintaining constant spacing}. For a general
purpose two-slug transformer it is necessary
that the position of the standing wave be
adjustable throughout a full one-half wave-
length. Thus the minimum required overall
length of a general purpose two-slug trans-
former is seen to be composed of the sum of
the following lengths:

1. One-half wavelength required for phase
adjustment.

2. The spacing required between slugs.

3. The combined lengths of the slugs.

-

Impedance matching capability of two-slug impedance transformer.
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Figure 9.9 is a summary of data obtained
as described from a SMITH CHART, showing
the overall impedance matching capability of
a two-slug transformer. In this figure, L is
the slug length and L, is the overall trans-
former length in wavelengths, and Z; is the
characteristic impedance of the slugs normal-

ized with respect to the characteristic imped-
ance of the main line. The chart shows the

maximum value of the standing wave ratio
S which can be reduced to unity,

The analysis on the SMITH CHART of the
two-slug transformer, as described, reveals the
possibility of using slugs much shorter than
a quarter wavelength in applications where

it is desirable to minimize the overall trans-
former length, or to limit the maximum
value of the SWR which the two-slug combi-
nation can reduce to unity, thereby improving
the operating bandwidth of the transformer.
For example, it can be seen from Figs. 9.8
and 9.9 that a pair of one-eighth-wavelength-
long slugs whose characteristic impedance is
0.4 times that of the main line will match any
possible load impedance which could result in
standing wave ratios between unity and 14/1.
Furthermore, such a combination of slugs will
provide a transformer whose overall length
never exceeds 1.096 wavelengths (0.5 + 2 «x
0.125 + 0.096 + 0.25).




10.1 L-TYPE MATCHING CIRCUITS

he advantages of matching impedances at a

junction between two circuits or media
have been pointed out in Chap. 9 and elsewhere
in this book and need no further explanation
here.

One of the most commonly used and gen-
erally satisfactory impedance transforming
networks for radio frequency applications is
the half-section L-type circuit employing two
essentially pure reactance elements [ 19, 149].
At a single frequency and, for most practical
purposes, embracing at least the sideband
frequencies of a radic telephone transmitter,
the simple L-type circuit may be used effec-
tively to transform any load impedance to any
desired pure input resistance value. Con-
versely, the L-type circuit may be employed
to accomplish the reverse transformation, that
is, to transform any load resistance to any
desired complex input impedance value. Itis
necessary to consider only the former type of
“transformation, however, since the circuit can
always be reversed to make the transformation

CHAPTER 1 O

Network
Impedance
Transformations

in the opposite direction. This simplifies the
presentation of design information.

It will be seen by referring to Fig. 10.1 that
there is a total of eight possible combinations
of reactance types, ie., inductive and capac-
itive, in an L-type circuit. Each of these eight
circuits is capable of transforming a restricted
range of complex load impedance values to a
given pure resistance value. The transformable
impedance values associated with each circuit
can conveniently be represented by the im-
pedances within a bounded area on a SMITH
CHART. A set of eight such representations
will therefore completely outline the capability
and limitations of the eight possible reactance
combinations, and will furnish a comprehen-
sive outline of the impedance transforming
capability of each reactance combination.

For radio-frequency applications, the losses
in an L-type circuit are usually small in
comparison to the power which is being
conducted through the circuit. Thus, the
circuit losses generally will not limit to any
serious extent the range of load impedance
values which can be transformed to a desired

115
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Fig. 10.1. Eight possible L-typa circuits for
transforming a complex load impadance Z; to a pure
resistance Zy,.

resistance, nor will they ordinarity have a
major effect upon the reactance values for the
circuit elements which are theoretically
required on the assumption that they are loss-
less. The design charts to be described are,
therefore, plotted for the idealized case of loss-
less circuits. Having selected a suitable lossless
circuit and having obtained the reactance
values required in such a circuit from the
charts, the probable resistance of the circuit
elements which must be used and the resulting
losses will be more readily determinable.

10.1.1 Choice of Reactance Combinations

The e¢ight SMITH CHART overlays in
Fig. 10.2 summarize the matching capabilities
of the eight possible L-type circuit combina-
tions of Fig. 10.1, and serve as a guide to the
selection of a suitable L-type matching c¢ircuit
for any particular impedance transformation.

A shaded area is shown on each of the eight
diagrams in Fig. 10.2. This is to indicate that
any load impedance vector whose extremity
falls anywhere within this “forbidden™ area
cannot be transformed to Z; (the desired in-
put resistance value) with the specific circuit
to which the diagram applies, and that in this
case one of the seven other L-type circuits
must be selected. If the extremity of the load
impedance vector falls anywhere inside of the
unshaded area, the circuit is capable of per-
forming the desired impedance transformation.

In cases where the impedance transforming
capabilities of two or more L-type circuifs
overlap, the particular circuit which calls for
the more practical circuit constants should,
of course, be chosen. It is of interest to
note that the circuits shown in Fig. 10.2(e)
and (g) are each capable of transforming the
same range of load impedances, although each
accomplishes a given transformation with
different reactance values. The circuits in
Fig. 10.2(f) and (h) are also both capable of
making the same impedance transformations.

10.1.2 SMITH CHART Representation of
Circuit Element Variations

On each of the eight diagrams shown in
Fig. 10.2 an example of the function of each
element of the circuit is illustrated using an
assumed load impedance vector Z;. The
influence of each of the circuit elements upon
Zy may be regarded as forcing the latter to
move along an “impedance path” on a SMITH
CHART from its initial position to a position
along the R axis, with its extremity at position
Z. This impedance path followed by a single
vector is illustrated on each of the eight
diagrams of Fig. 10.2 by a heavy line and an
accompanying arrow.

For example, refer to Fig. 10.2(a). Here,
any load impedance (such as Z') whose
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extremity falls in the unshaded area may be
sclected to be transformed with an L-type
circuit of the type indicated on this diagram
to a chosen value of pure resistance Z,. [n
this case it will be noted that the effect of
the shunt capacitive reactance on the imped-
ance vector Z; is to rotate its extremity clock-
wise around z circular path leading to the point
Z,. This path is always along a circle tangent
to the X axis at X =0, and centered on the B
axis of the SMITH CHART. Z; represents
the extremity of a second impedance vector,
the resistance component of which is equal
to Z, (To simplify the diagrams, only the
extremities of the vectors are indicated.) The
capacitive reactance component of the imped-
ance vector Z, is then canceled by the
reactance of the series inductance element of
the L-type circuit, which moves the vector
along the path to position Z,, thus completing
the transformation.

The required inductive and capacitive re-
actances of the L-type circuit elements are
not shown in Fig. 10.2, which, as explained,
is useful primarily to compare the matching
capabilities of the various circuits.

10.1.3 Determination of L-type Circuit
Constants with a SMITH CHART

To obtain the proper value of the inductive
and capacitive reactances required in a given
L-type circuit to transform a given complex
load impedance Z, to a given pure resistance
Zy select the design curves which have
been plotted for the particular circuit chosen.
These are plotted in Figs, 10.3 through 10.10
for each reactance element of each of the
eight possible circuits. The applicable circuit
can be identified by referring to the small
schematic diagram associated with each.
Each of these families of design curves is
used as an overlay for SMITH CHART A,

in the cover envelope, with which it must be
accurately aligned.

The load impedance, indicated at the ex-
tremity of the load impedance vector, should
be spotted on the SMITH CHART coordinates
which are superimposed on the appropriate
design chart. The required circuit reactance
values are then obtained from the design chart
by interpolating between the indicated values
on the nearest reactance curves plotted there-
On.

Problem 10-1, which follows, further illus-
trates this use of the design charts.

10-1 (a)} Select an L-type circuit which will
transform a load impedance of 140 +
j 60 ohms to a pure resistance of 50
ohms.

Solution:
From the foregoing we may write:

Zy = 50

Z, - 140 + j80 = 287 + j1.22,

Refer to SMITH CHART A and Fig.
10.2 and observe that the above load
impedance vector Z, falls within the
unshaded (transformable) area of dia-
grams a and b, and within the shaded
or “forbidden” area of diagramsc to h
inclusive, A choice of two circuits is
therefore available for this transforma-
tion. Select one—for example, that of
diagram b.

{(b) Determine the reactance value of
each element of the circuit selected.

Solution:

On SMITH CHART A locate the above
impedance value; then superimpose
this chart on the design curves of Fig.
10.4 (as directed on diagram b of Fig.
10.2). Next determine the correct
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reactance values for X, and X, by
noting that the extremity of this load
impedance vector Zp, as plotted on
the SMITH CHART, falls at the inter-
section of the design curves labeled
X, /25=3.0 and X./Z, = 1.5. Since
Zy = 50 ohms, X; = 3.0 x 50 = 150
ohms, and X~= 1.5 x 50 = 75 ohms.

If a complex load impedance is not known
exactly but can be estimated within certain
limits, these limits may be mapped directly
on the SMITH CHART and the range of
circuit reactances required can thus be com-
pletely bracketed.

This feature will be most appreciated when
an L-type circuit must be designed to accom-
modate any one of a range of possible load
impedance values. The design of a circuit to
match the input impedance of a radio antenna,
which is usually not definitely known in ad-
vance of its construction, to the character-
istic impedance of a transmission line is
readily accomplished with this type of dia-
gram. In such cases, the limitations of a
given circuit establish limiting requirements
for the circuit elements. Problem 10-2, which
follows, illustrates this case.

10-2  (a) Select an L-type circuit which can
be adjusted to match any load imped-
ance falling within the range 25 to 75
ohms resistance and § to 50 ohms
positive reactance to a pure resistance
of 100 ohms.

Solution:

From the foregoing we may write
ZO = O

Zp = (20 to 80) + j(O to 60) ohms

(0.20Z, to 0.80Zy}
+ j{0 to 0.60Z;) ohms

From Figs. 10.3 to 10,10 and SMITH
CHART A select a diagram upon

which the above “block” of imped-
ance values all fall within a transform-

able {unshaded} arca. The L-type
circuit of Fig. 10.6 is found to be the
only suitable circuit for this case.

(b) Determine the limiting reactance
values of each of the two circuit
elements.

Solution:

On SMITH CHART A outline the
above range of impedance values,
then superimpose this chart on the
design curves of Fig. 10.6. Deter-
mine the limiting values for X; and
X from the curves which just touch
the edges of the outlined area. The
following limiting values will be
observed:

X, = 0.5Z, to 2.0Z, =50 to 200 ohms
Xp - 052, to 1.1Z, = 50 to 110 ohms

10.2 T-TYPE MATCHING CIRCUITS

By the addition of a third reactance ele-
ment in series with the chosen input resistance
obtained with an L-type impedance matching
circuit, thus forming a T-type circuit, any
complex load impedance value can be trans-
formed to any desired complex input imped-
ance value. The overlay charts of Figs. 10.3
to 10.10 inclusive are applicable in this case
also. The reactance required in the third
element depends upon the value of input
reactance desired. If a circuit is chosen which
already includes a series reactance ¢lement
in the input side, such as one of the circuits
shown in diagrams a, b, e, and f of Fig. 10.1,
the “third” reactance required would be
combined algebraically with the former, re-
sulting in a single net reactance value in this
position.
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10.3 BALANCED L- OR BALANCED by treating the problem as an unbalanced one.
T-TYPE CIRCUITS The required series reactance obtained from

the diagrams is simply divided into two parts,

each having one-half of the value called for on

If the input impedance of a matching cir- the charts. These two halves of the necessary
cuit must be balanced with respect to ground, total series reactance are then connected in
the L-type circuit design curves can be used to series with each side of the circuit to preserve

design 2 suitable impedance matching circuit the balanced-to-ground arrangement.




11.1 IMPEDANCE EVALUATION FROM
FIXED PROBE READINGS

At radio frequencies where slotted wave-

guide or transmission line sections would be
excessively long, probe measurements of the
relative current (or relative voltage) amplitudes
at discrete sampling points along the waveguide
provide a convenient and practical technique
for measuring the complex impedance and re-
lated parameters. The SMITH CHART isuseful
for interpreting and evaluating data obtained
from such measurements [112, 208] aswill be
described herein. The principle is made use of
in the SMITH CHART plotting board shown
in Fig. 14.5.

In a waveguide or transmission line propa-
gating clectromagnetic wave energy in a single
mode, relative amplitude measurements of
either current or voltage at three fixed probe
positions uniquely determine the standing
wave ratio and the wave position, provided
that no two of the probes are separated an
exact multiple of one-half wavelength. The

CHAPTER 11

Measurements of

Standing
Waves

standing wave pattern, in furn, is related to
the impedance and other waveguide param-
eters, as described in previous chapters. The
electrical separations of the probes need
not be uniform but must be known. This is
generally calculable [10] from the physical
construction of the waveguide or transmission
line, as described in Chap. 3.

As was shown in Chap. 3, the shape of
standing current and voltage waves of a given
ratio are identical, and both are different and
unique for each different standing wave ratio,
varying from a succession of half sine waves
as the amplitude ratio approaches infinity to
a sinusoidal shape as the amplitude ratio
approaches unity. It is possible for this reason
to plot unique families of impedance locus
curves, each family corresponding to a fixed
probe spacing, and each curve of each family
corresponding to a fixed ratio of current {or
voltage) probe readings. Figures 11.1 through
11.4 show four families of such probe ratio
curves, corresponding to fixed probe spacings
of one-sixteenth, one-eighth, three-sixteenths,
and one-quarter wavelength.
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For flexibility in the application of these
curves to voltage-probe as well as current-
probe readings, the SMITH CHART imped-
ance coordinates with which they are associ-
ated have been omitted. However, when
required these impedance coordinates can
conveniently be supplied as an overlay thercon
by the use of the translucent SMITH CHART
{Chart A) in the back cover of this book.

Any two families of probe ratio curves in
combination with the translucent SMITH
CHART coordinates are capable of determin-
ing values of all possible load impedances along
a waveguide. In any given situation, however,
a single value is indicated at Py on the
SMITH CHART coordinates, which point
occurs at the intersection of a single pair of
probe ratio curves corresponding to the actual
readings.

At 180° (one-half wavelength) separation
two probe readings along a uniform lossless
wavepuide are identical and the impedance
loci curves for the two families of probe ratio
curves become coincident with one another.
One-half wavelength spacing for any of the
three sampling points must, therefore, be
avoided. Sampling point spacings of less than
about one-sixteenth wavelength or between
seven- and nine-sixteenths wavelength, fifteen-
and seventeen-sixteenths wavelength, etc., are
inadvisable, since in these cases the families
of ratio curves so nearly parallel each other
that small errors in readings can represent
large errors in the determination of the
impedance.

11.1.1 Example of Use of Overlays with
Current Probes

Three current probes are spaced one-eighth
wavelength apart along a transmission line; the
overall separation of probes is, therefore, one-
quarter wavelength. Two probes, each desig-
nated P g are located on the generator side, and

a third probe Py on the load side. The ratio of
the current in the center probe P g f0 the cur-
rent in the probe on thelpad side of the group
Py is assumed, for example, to be 0.5. (Note
that this pair of probes is spaced one-eighth
wavelengths.) Simultaneously, the ratio of cur-
rents in the probe on the generator side of the
group P, to the probe on the load side of the
group Py is assumed to be 0.7. (Note that
this pair of probes is spaced one-quarter wave-
length and that Py is common to both probe
ratios.)

Find the impedance on the SMITH CHART
at Py

1. For the pair of probes which is spaced
one-eighth wavelength, select Fig. 11,2, which
applies specifically to probe ratios at this
spacing, and trace the locus curve Pg/PF =
0.5 onto the superposed impedance coordi-
nates of the translucent SMITH CHART
(Chart A) in the back cover of this book.

2. For the pair of probes which is spaced
one-quarter wavelength, select Fig, 11.4 and
similarly trace the locus curve Pg/PP = 0.7,
thereon, onto the same impedance coordi-
nates.

3. Observe the intersection of these two
traces on the SMITH CHART impedance
coordinates to be at the common reference
point Py where the normalized impedance
of the transmission line is (0.5 +7 0.5) Z;,.

11.2 INTERPRETATION OF VOLTAGE
PROBE DATA

It is equally feasible and practical to employ
Figs. 11.1 through 11.4 in combination with
the SMITH CHART coordinate overlay, to
determine the impedance corresponding to
any three voltage probe readings. As was
shown in Chap. 4, the normalized voltage at
any position along a uniform lossless wave-
guide is exactly equivalent to the normal-
ized current one-quarter wavelength removed
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Fig. 1.1, Loci of constant ratios of current or voltage on a SMITH CHART at two probe points P, and Py spaced A/16 along a
transmission line (overlay for Charts A, B, or C in cover anvelope).
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Fig. 11.2.  Loci of constant ratios of current or voltage on 3 SMITH CHART at two probe points P g and Py spaced /8 along a
transmission line {overlay for Charts A, B, or C in cover envelope).
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Fig. 11.3. Loci of constant ratios of current or voltage on a SMITH CHART at two probe paints D g and Py spaced 3A/16 along a
transmission line {overlay for Charts A, B, or  in cover envelops).
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Fig. 11.4.
transmission line {overlay for Charts A, B, or C in cover envelope).




therefrom. Also, any one-quarter wavelength
transfer of reference point along a waveguide is
represented by a rotation around the center
of the SMITH CHART coordinates an angular
distance of 180°. Therefore, if voltage probes
are used instead of current probes, for which
the ratio curves in Figs. 11.1 through 11.4

Locus oF !

————————— RaADIUS OF SMITH CHART (R}
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apply directly, it is only necessary to rotate
the ratio curves through an angle of 180°
with respect to the SMITH CHART imped-
ance coordinates to make them applicable.
The desired impedance is then indicated at
Py, as before, from any intersecting pair of
voltage probe ratio curves.

4

e *360 5/ DEG.

WHEN 0 By /Bp< 1.0:
D, 2P/ PP sin a/[(Pyspg V1]
Ra = (Fg/Fy) Dy

Fig. 11.5.
S/h slong a tossless transmission line.

g
”“HE‘
14
L5 sury CHART COORDINATES

WHEN 1.0 < Po/Fy <o

WHEN 1.0 < Py /Py < o
Dy = 2uin &/ [(Rp/Py)-1]
Ry = [P/ ) By

Construction of loci of constant ratios of current on impedance coordinates of a SMITH CHART at two points spaced
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In summary, as oriented in Figs. 11.1
through 11.4 with respect to the overlay
Charts A, B, or C, in the cover envelope, the
intersection point of any pair of current
ratio curves gives the impedance at Py, while
the intersection point of any pair of voltage
ratio curves gives the admittance at Pp. When
rotated 180° about their axes with respect to
the coordinates of the overlay charts A, B,
or C, the intersection point of any pair of
current ratio curves gives the admittance at
Py, while the intersection point of any pair
of voltage ratio curves gives the impedance

11.3 CONSTRUCTION OF PROBE RATIO
OVERLAYS

Information is given in Fig. 11.5 for plot-
ting probe ratios which correspond to any
desired probe separation. All such plots
require only straight lines and circles for
their construction. The outer boundary of
such a construction corresponds to the bound-
ary of the SMITH CHART coordinates.

As shown in Fig. 11.5 the separation of any
two sampling points S/A determines the angle
a as measured from the horizontal R/Z axis.
This angle establishes the position of a straight
line through the center of the construction
which represents the locus of impedances at
the probe position Py when the current
standing wave ratio is varied from unity to
infinity while the wave is maintained in such
a position along the transmission line with
respect to the position of the two sampling
points that they always read alike, that is,
that P _/Pg=1.0.

A construction line perpendicular to the
locus Pg/Pp = 1 and passing through the
infinite resistance point on the R/Z; axis will
then lie along the center of all of the P,/Py
circles which it may be desired to plot.

The ratio of each of these circular arcs(Rl
and Rz) which corresponds to a particular
current ratio, and the distance of their centers
from the chart rim (D, and D,), is given by the
formulas in Fig. 11.5 as a function of the
ratio of P_ to Py and the SMITH CHART
radius K.




12.1 NEGATIVE RESISTANCE

In all passive waveguide structures, the pri-

mary circuit elements resistance and con-
ductance act like absorbers of electromagnetic
wave energy. As such, their mathematical
sign is, by convention, positive. However,
certain active electrical devices exist whose
equivalent circuit can most conveniently be
represented by negative resistance or negative
conductance elements. Negative resistance and
negative conductance circuit elements act more
like sources than absorbers of electromagnetic
wave eHergy.

Electrical devices such as parametric and
tunnel diode reflection amplifiers, which can
be schematically represented by negative re-
sistance or negative conductance in combina-
tion with conventional circuit elements, are
frequently used in connection with wave-
guides. In order to properly represent their
characteristics on a SMITH CHART for graph-
ical analysis, it is important to understand the
“effect of negative resistance or negative con-
ductance upon the associated waveguide elec-

CHAPTER 1 2

Negative
Smith
Chart

trical characteristics. This will be discussed
more fully herein. It will be found, for
example, that when a waveguide is terminated
in a circuit which has a resultant negative
resistance or negative conductance compo-
nent, the complex reflection coefficients and
the complex transmission coefficients at all
peoints along the waveguide are different from
what they would have been had the sign of
the resistance or conductance been positive.

Negative resistances and negative conduct-
ances do not actually produce energy, but
rather act to transform and release energy
from an associated source (such as a battery)
into electromagnetic energy whose frequency
is controlled by a primary source of smaller
energy level. Negative resistance is defined
[7] as the property of a two-terminal device
with an internal source of energy which is
controlled either by current through or by
voltage across the terminals, but not by both.
Negative conductance is defined as the re-
ciprocal of negative resistance.

The mathematical distinction between posi-
tive and negative resistance (or positive and
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negative conductance) is portrayed by the
slope at a peint on a plot of the voltage-
current relationship, where current is repre-
sented as the ordinate and voltage as the
abscissa on a cartesian coordinate grid. Figure
12.1{a) illustrates the voltage-current c¢har-
acteristics of a typical negative-resistance de-
vice such as a tunnel diode. If the current
through a resistance or conductance increases
with increased applied voltage (positive slope),
the sign of the resistance or conductance is
considered to be positive in this portion of its
operating range. On the other hand, if the
current decreases with increased applied volt-
age (negative slope), the sign of the resistance
or conductance is considered to be negative
in this portion of its operating range.

In Fig. 12.1(a) the points P_ and P , where
the slope is zero, illustrate conditions where
the resistance is plus and minus infinity,
respectively. The inflection point P, where
the slope changes from a decreasing negative
value to an increasing negative value, represents
conditions where the negative resistance is
minimum (negative conductance is maximum).
The effective value of negative resistance at
any point on the voltage-current plot of Fig.
12.1(a) is shown in Fig. 12.1(b).

12.2 GRAPHICAL REPRESENTATION OF
NEGATIVE RESISTANCE

The graphical representation on the SMITH
CHART of impedances or admittances with
negative resistance or negative conductance
components, respectively, presenis no special
problems, as may have been inferred from the
various transformations of the conventional
chart coordinates which have been suggested
to accomplish this [12].

It will be shown in this chapter how the
conventional SMITH CHART impedance co-
ordinates and associated peripheral scales
(Fig. 3.3) are applicable without any trans-
formation to the representation of impedances
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with either positive or negative resistance
components and, in fact, how a single repre-
sentation best serves both purposes. Since
the sign of a negative resistance is, by
convention, identical to the sign of the equiv-
alent conductance, it follows that no change
is required in the admittance coordinates of
the conventional SMITH CHART to represent
admittances with either positive or negative
conductance components.  All peripheral
scales of the conventional SMITH CHART
including the reflection coefficient phase angle
scale are independent of the sign of the real
components of impedance or admittance.

All radial scales of the conventional SMITH
CHART which have been described in previous
chapters except the reflection coefficient
magnitude scale and the reflection loss scale
apply in all cases where the real components




of impedance or admittance are designated
with positive or negative values.

Interpretation of the use of these previously
described radial scales in connection with
negative real-component coordinates may be
helpful and, accordingly, will be discussed
herein. A new radial scale for reflection
coefficient magnitude, to be used exclusively
with negative real-component coordinates,
will be fully described. The radial “‘reflection
loss™ scale described in Chap. 4 is meaningless
in connection with real-component coordi-
nates.

The reflection coefficient and transmission
coefficient magnitude and phase overlays
(Figs. 3.5 and 5.4, respectively) which have
been described for positive real-component
coordinates of impedance and admittance are
not applicable to negative real<omponent
coordinates. In their place, a new reflection
coefficient magnitude and phase overlay (Fig.
12.6) and a new transmission coefficient
magnitude and phase overlay (Fig. 12.7),
specifically applicable to negative real-com-
ponent coordinates, will be presented and
discussed.

The SMITH CHART negative real-compo-
nent coordinates are particularly applicable to
the design and performance analysis of reflec-
tion-type oscillators and amplifiers employing,
for example, tunnel diodes which function in
connection with waveguides, well up into the
microwave frequency range. The gain and
stability characteristics of such devices may
readily be determined from an input imped-
ance or input admittance plot of operating
parameters, such as frequency and bias voltage,
on negative real-component SMITH CHART
coordinates,

12.3 CONFORMAL MAPPING OF THE
COMPLETE SMITH CHART

A set of cartesian coordinates is shown in
Fig. 12.2(a) whose axes are designated with
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normalized values of positive and negative
resistance, and positive and negative reactance.
(In order to simplify this discussion the
optional admittance component designations
on these coordinates are omitted.} Upon this
coordinate system the loci of the reflection
coefficient amplitude and phase components
may be plotted (Fig. 12.2(b}). These loci
are observed to be orthogonal families of
circles.

On the positive resistance (right) half of
the plot in Fig. 12.2(b) the reflection coef-
ficient magnitude is at all points less than
unity. In terms of the normalized impedance
components R/Zy and +jX/Z, the complex
reflection coefficient on the positive half of
this plot is given by

(R/Zy + jX/Zg) - 1

_ (12-1)
(R/Zy + jX/Z4) + 1

-if&
p = |ple”’

On the negative (left) half of the plot of
Fig. 12.2(b) the magnitude of the reflection
coefficient is the reciprocal of the magnitude
of the reflection coefficient at the corre-
sponding position on the positive resistance
half, as reflected through the origin, Thus,
on the negative half it is

(-R/Zy + jX/Zg) - 1

P - : e
(-R/Z0 + _}X/ZO) +1

= lp
(12-2)

It will be observed from Fig. 12.2(b) that
both the complex reflection coefficient and
the related complex tmpedance component
curves extend to infinity in all directicns from
the origin. This seriously limits the useful
range of such a plot of this relationship,

To overcome the above difficulty a bilinear
transformation of coordinates may be made,
the results of which are shown in Fig. 12.2(c).

In such a transformation the circular shape
of all individual ¢urves and the angle between
respective curves of the two families at all
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Fig. 12.2.  Conformal mapping of complete SMITH CHART.




poinis of intersection are unchanged. [t will
be noted that, in contrast to Fig. 12.2(b), the
finite area occupied by the transformed co-
ordinates of Fig. 12.2(c) includes all possible
values of the complex reflection coefficient.

Using Fig. 12.2(c¢) as a new coordinate
grid, the loci of normalized waveguide im-
pedance components can be plotted from the
relationship given in Egs. (12-1) and (12-2).
This results in a complete (positive and
negative real component) SMITH CHART
shown on Fig. 12.2(d).

At this point it is important to recognize
that any graphical representation of the inter-
relationship of several dependent variables
which can be plotied on a flat sheet of
paper is equally valid when viewed from
the front, or through the paper on which
the plot is made, i.e., from the back. Ac-
cordingly, one is free to choose the more
convenient of these two representations. With
this in mind, it will be observed that the left
half of the impedance plot of Fig. 12.2(d)
(shown as solid line curves) viewed through
the paper from the back is identical to the
right half, viewed from the front, with the
single exception that the sign of the normai-
ized resistance component values is negative.
1t will also be observed that when compared
in this way the sign of the normalized
reactance component is unchanged, i.e., the
positive reactance region of the plot remains
on the upper half and the negative reactance
region of the plot remains on the lower haif.
Also, the magnitude of the positive reactance
increases in a clockwise direction and the
magnitude of the negative reactance increases
in a counterclockwise direction on both
representations.

Thus, by electing to view the two halves of
Fig. 12.2(d) as indicated above, the same
plot may be used to represent either positive
or negative resistance components. However,
in the same way that one must choose whether
the SMITH CHART coordinates are to repre-
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sent normalized impedance or normalized
admittance before entering the chart, so must
he also choose whether these same coordinates
are to represent impedances (or admittances)
having positive or negative real parts.

The advantages to be derived from a
common SMITH CHART representation of
impedances or admittances with either positive
or negative real part components are apparent
when it is appreciated that this permits the
application of a common technique for the
graphical evaluation of impedance employing
standing wave amplitude and position meas-
urements along a waveguide.

12.4 REFLECTION COEFFICIENT
OVERLAY FOR NEGATIVE
SMITH CHART

As explained above, the conventional
SMITH CHART of Fig. 3.3 or Fig. 8.6 can
serve for the representation of impedances or
admittances with either positive or negative
real parts. However, certain important dif-
ferences exist in the respective complex re-
flection coefficient and transmission coef-
ficient overlays. As previously stated, the
phase angle of the voltage or current re-
flection coefficient overlay, displayed on the
peripheral scale of the above chart and also
as the family of radial lines on the overlay
(Fig. 3.5), is unaltered in magnitude or sense
of direction when the coordinates are chosen
to represent negative real parts. The magni-
tude of the voltage or current reflection
coefficient, as represented on this overlay by
the family of concentric circles, applies only
to SMITH CHART coordinates with positive
real components. For negative real compo-
nents the voltage or current reflection co-
efficient magnitudes are represented in the
overlay of Fig. 12.6.

When SMITH CHART coordinates (Fig.
12.3) are used for displaying impedances
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with negative resistance components, the mag-
nitude of the voltage or curmrent reflection
coefficient at any point on the chart, repre-
sented by the values desighated on the con-
centric circles on the overlay of Fig. 12.6, is
the reciprocal of that shown at the same
chart position on the overlay (Fig. 3.5) for
the positive resistance chart. This may be
seen from a comparison of Eqs. (12-1) and
(12-2). On the positive resistance SMITH
CHART coordinates the magnitude of the
voltage or current reflection coefficient (radial
scale) progresses linearly from unity at the
rim of the chart to zero at its center (as
shown on the right half of Fig. 12.2(¢)), while
on the negative resistance SMITH CHART
coordinates this scale is not linear (as shown
on the left half of Fig, 12.2(c)). Physically,
this simply means that the magnitude of the
reflected voltage (or current) waves along a
waveguide is greater than the magnitude of
the corresponding incident waves from the
generator.

The net power flow along a waveguide
terminated in a negative resistance (or nega-
tive conductance) is, accordingly, towards
the generator. Such a termination thus acts
like a secondary source of electromagnetic
energy whose amplitude is equal to the
amplitude of the primary source times the
magnitude of the reflection coefficient.

For a given termination mismatch ratio
the standing wave ratio (SWR) accompanying
a negative resistance (or negative conductance)
load component is the same as the SWR ac-
companying a positive resistance (or positive
conductance component) of equivalent am-
plitude. The sign of the SWR is negative in the
former case, which has no physical significance,
and can, therefore, be ignored. Since it is not
possible to distinguish from sfanding wave
ratio and wave posiiion measurements whether
the load resistance (or conductance) compo-
nent is positive or negative, to resolve this
guestion it may be necessary to measure the

absolute magnitude of the standing wave
voitage and/or current, and to determine
from these measurements the actual power
flow in the waveguide in relation to the
maximum available power output from the
pritmary source operating into a known posi-
tive resistance load. If the power flow in the
waveguide is more than the available power
from the primary source, the load impedance
or admittance has a negative resistance (or
conductance) component. If the waveguide
has sufficient attenuation, another method
for resolving this question is fo observe,
from standing-wave probe measurements,
whether the input impedance vs. position
along the waveguide spirals toward the chart
center (posifive resistance or conductance
termination) or toward the rim (negative
resistance or conductance termination) as
the fields are probed along the waveguide
toward the generator,

125 VOLTAGE OR CURRENT TRANS-
MISSION COEFFICIENT OVER-
LAY FOR NEGATIVE SMITH
CHART

The voltage, current, and power transmis-
sion coefficient as applied to waveguides
terminated in impedances or admittances with
positive teal parts was discussed in Chap. 5.
The definitions for these transmission coef-
ficients as given therein apply regardless of
whether the waveguide is terminated in im-
pedances or admittances with positive or
negative real parts. The fransmission coef-
ficient is defined in all cases as the complex
ratio of the resultant of an incident and
reflected quantity associated with the wave
(such as voltage, current, or power) to the
corresponding incident quantity,

A voltage (or current) complex transmission
coefficient overlay for the coordinates in Fig.
12.3 is shown in Fig. 12,7. As oriented in




NEGATIVE SMITH CHART 143

[
T T e N
! kf
:\1‘ \%’0" ;
) o | iy
N g <
‘{_ﬁ. .2 2
¥
4,"9 |
3
)
<5
[2) 0.k
g :
oL !
g —
&3 '
¥ 0
2 13
(3 é:? 1
& I 'Il
& )
Iy .
™ )
: ‘
& 7 |
& t
ur 8 -
L4
b e
=
o} @ '
§ :
; T Fo . -
: I ~4 + ] : i i
T j M) - o —+f— D) o4 ;
t %-[rlllll1| -|||II\ T g < = d; e : 3 E e - i‘ -
EGATIVE RESISTANCE COMPONENT{SRL], OR CONDUCTANCE ComponENT(32] ! ' _L_+J'_ L
. Zo T . ~1—
] 1
_ a2 [
| J‘l: B — -~
ot
ey
) o
A ta
e o
ol Y
0 ;
< /j:( 2
B S T
PN o t
“}-_t’ S
u‘e& ¢ ; T
o T J — A
\97/ o ] A
'
QY
%,
Y
% 2 i +: f
I3 —_
i
I
) P
| % >
LA
%

SMITH CHART coordinates displaying ractangular component of equivalent series-circuit impedance {or of

Fig. 12.3.
parallel-circuit admittance} with negative real parts,




144 ELECTRONIC APPLICATIONS OF THE SMITH CHART

Fig. 12.7 in relation to Fig. 12.3, it represents
the voltage transmission coefficient on the
negative resistance coordinates or the current
transmission coefficient on the negative con-
ductance coordinates. When rotated 180°
from this orientation, the overlay of Fig.
12.7 represents the voltage transmission co-
efficient on the negative conductance com-
ponents or the current transmission coefficient
on the negative resistance ¢oordinates of this
same chart. The 180° phase centour in
Fig. 12.7 should always be aligned with the
corresponding standing wave minima loci on
the negative impedance or admittance co-
ordinates.

From the transimission coefficient overlay
of Fig. 12.7 the shape and relative amplitudes
of standing waves vs. SWR may be plotted
for a constant incident wave amplitude. This
is accomplished by plotting the intercepts of
any desired standing wave circle with those
circles in Fig. 12.7 which indicate the magni-
tude of the woltage or current transmission
coefficient, The construction of standing
wave circles on SMITH CHART coordinates
is described in Chap. 3. Standing waves of
three different amplitude ratios are plotted
in Fig. 12.8. Note that in this case, where
the real part of the waveguide termination is
negative, the absolute value of voltage or
current along the wavegufde can approach
infinity, as compared to a limiting value of
twice the incident wave amplitude for the
case where the real part of the termination is
positive (compare Fig. 12.7 with Fig. 1.3).

The SWR is unity in the limiting case
where the transmission coefficient is infinity.

Since, as previously stated, power has no
“phase,” the power transmission coefficient
is the scalar ratio of the transmitted (resultant
of incident and reflected) to the incident
power; this is constant for all positions along
a lossless waveguide regardless of whether the
waveguide termination has positive or negative
real components.

12.6 RADIAL SCALES FOR NEGATIVE
SMITH CHART

A set of radial scales for negative SMITH
CHART coordinates* is shown in Fig. 12.4.
The overall length of these scales corresponds
to the radius of the negative resistance co-
ordinates in Fig. 12.3 and to the reflection
and transmission coefficient overlays in Figs.
12.6 and 12.7, respectively. All but one of
these radial scales, viz., the voltage (or current)
reflection coefficient magnitude scale, are
identical to those described in previous bul-
letins for use on positive SMITH CHART
coordinates. (Since the reflection loss scale
has no physical significance it is omitted from
the radial scales in Fig. 12.4.)

Although the radial scales are the same, an
interpretation of their special significance and
use in connection with negative SMITH
CHART coordinates may be helpful. This
will be discussed in the following paragraphs.

12.6.1 Reflection Coefficient Magnitude

As previously shown, when used with
negative resistance (or conductance) loads
the voltage or current reflection coefficient
at any point on SMITH CHART coordinates
is the reciprocal of the corresponding value
of voltage or current reflection coefficient
when the load resistance (or conductance) is
positive; thus, all points along this scale are
greater than unity. A voltage or current
reflection coefficient radial scale suitable for
use with negative SMITH CHART coordinates
is shown on the upper right-hand scale of
Fig. 12.4. This scale is used with negﬁtive
SMITH CHART coordinates in the same way
that the voltage-current reflection coefficient

*The term “nepgative SMITH CHART coordinates™ will
henceforth be used te designate normalized impedance or
normalized admiitance coordinates of a SMITH CHART
representing negative real components.




magnitude scale of Fig. 3.4 is used with
positive coordinates.

A particular significance of the radial volt-
age-current reflection coefficient scale on
negative SMITH CHART coordinates is that
it provides a measure of the voltage gain of
any negative resistance reflection amplifier.
This is described in the last part of this
chapter using a SMITH CHART impedance or
admittance representation of the amplifier’s
input characteristics.

12.6.2 Power Reflection Coefficient

As on a conventional positive SMITH
CHART, the radial power reflection coefficient
scale indicates the ratio of reflected to in-
cident power. Its value at any point on the
negative SMITH CHART is, however, greater
than unity. Values along this scale equal the
square of the voltage-current reflection coef-
ficient magnitude at the same point.

The power reflection coefficient scale is
shown in Fig. 12.4 adjacent to the scale for
voltage-current reflection coefficient magni-
tude described above. Unlike the voltage-
current reflection coefficient the power
reflection coefficient has amplitude only.
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Both power and voltage-current reflection
coefficients are constant throughout a uni-
form lossless waveguide, but in a waveguide
with attenuation they both increase with
distance toward the load from a minimum
value at the generator end.

12.6.3 Return Gain, dB

A waveguide with a negative resistance
and/or negative conductance termination has
more power reflected toward the generator
than is incident on the load. Consequently
the return loss is negative, i.e., the waveguide
termination results in a rerurn gain. 'The
scalar values as obtained from the return
loss scale for positive resistance or conduct-
ance terminations (see Chap. 4) are un-
changed. However, with negative resistance
or conductance terminations these values
must be interpreted to be the gain (in dB)
afforded by the termination. It will be
noted that this scale is also the power
reflection coefficient in dB.

The return gain scale is shown in Fig. 12.4
directly below the scale for power reflection
coefficient.
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IMPEDANCE OR ADMITTANCE COORDINATES
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Fig. 12.6.
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12.6.4 Standing Wave Ratio

The radial scales expressing voltage or
current standing wave ratio (both as a ratio
and in dB), which are discussed in Chap. 3,
are not altered by the fact that the load
resistance or conductance is negative. Slotted
line measuring techniques may be applied
in the usual way to waveguides terminated
in negative resistance or negative conductance
loads. The shapes of voltage or current
standing waves of several amplitude ratios
are shown in Fig. 12.8. Their shape (as
well as their position along the waveguide)
is independent of the sign of the real com-
ponent of the waveguide input impedance or
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admittance. The standing wave ratio scale is
the lowest of the four scales on the left side
of Fig. 12.4.

12.6.5 Standing Wave Ratio, dB

This scale, like the standing wave ratio
scale, is unaltered by the sign of the real part
of the termination. However, as discussed in
Chap. 3, the use of the decibel (dB) to
express standing wave ratio is not in accordance
with the true meaning of this term. The stand-
ing wave ratio scale in dB is shown on the
left side of Fig. 12.4 adjacent to the standing
wave ratio scale.

6.0

/ ~ \
4 N
&
a 5.0 \
E:: SWR = I.5
S p, N, A
-
840 N
H S
-
2
a
3.0

3 2y N
. / N\, /
@
o /
(™S
g 20 A4 - N__ |/
0L ~ AN 4
w 7 ™
: +
- 1.0 / \ /
ol

ll// \, /]

0 0.1 0.2 0.3 0.4 0.% 0.6
RELATIVE POSITION ALONG WAVEGUIDE ~ WAVELENGTH
~Fig. 12.8.  Relative amplitudes and shapes of voltage or current standing waves along a

lossless waveguide with negative resistance (or negative conductance} termination (constant

input voltage).



150 ELECTRONIC APPLICATIONS OF THE SMITH CHART

12.6.6 Transmission Loss, 1-dB Steps

The effects of dissipative losses along a
waveguide on input impedance or input ad-
mittance, when the load resistance or con-
ductance is negative, is opposite to the usual
effect encountered with loads having positive
real parts. With negative resistance or negative
conductance terminations, attenuation in a
waveguide results in an outward spiral path
from the SMITH CHART center when pro-
gressing along a waveguide toward the genera-
tor, and an inward spiral path toward the
chart center when progressing along the wave-
guide toward the load. The one-way trans-
mission loss scale divistons are unaltered, but
the designated directions of movement along
this radial scale {shown on the left side of
Fig. 12.4 adjacent to the transmission loss
coefficient scale) are reversed from those
shown in Fig. 4.1,

12.6.7 Transmission Loss Coefficient

This scale shows the percentage increase
in dissipative losses in a waveguide due to the
presence of standing waves as compared to
the losses in the same waveguide when trans-
mitting the same power to a load without
standing waves. It is the ratio of mismatched
losses to matched losses. The transmission
loss coefficient scale (shown on the left side
of Fig. 12.4 adjacent to the transmission
loss scale) is unaltered by the sign of the reul
part of the termination.

12.7 NEGATIVE SMITH CHART COORDI-
NATES, EXAMPLE OF THEIR USE

The representation of the electrical char-
acteristics of a device with a negative re-
sistance (or conductance) component on a
negative SMITH CHART can perhaps best be

described with a practical example [13]. A
tunnel diode reflection amplifier, which makes
use of the increase in reflected power in an
associated waveguide, will be seclected for
this purpose.

The dc¢ voltage-current characteristics of a
typical tunnel diode, as shown in Fig. 12-1(a),
were discussed earlier in this chapter. Its
negative resistance region is shown in Fig.
12.1(b). The diode is nominaliy biased to
operate in the linear portion of ifs negative
resistance region, near point P, Since a
tunnel diode reflection amplifier depends
upon negative resistance to provide amplifi-
cation, only the voltage interval for which
the resistance is negative is of significance.

12.7.1 Reflection Amplifier Circuit

A basic waveguide circuit for a tunnel
diode reflection amplifier is shown in Fig,
12.9.  An ac signal source, whose internal
impedance is maiched to the characteristic
impedance of the waveguide to which it is
connected, is indicated thercon. For this
discussion it will be assumed that the internal
impedance of this source is constant over the
frequency band in which the amplifier is
operable. In practice this is not entirely
true and the extent to which the above

Al
SQURLCE

WAVEGUIDE
N

WAVEGUIGE
CIRCULATOR

LGaD

Fig. 12.9. Basic waveguide circuit for a tunnel diode
reflection amplifier.




assumptions depart from true conditions will
affect the analysis.

The input power from the source to the
waveguide flows along the waveguide, through
the circulator in the path indicated, through
the tuner, and into the tunnel diode, whose
hiasis adjusted to provide a negative resistance.
From the dicde it is reflected back through
the tuner into the waveguide toward the
source, around another section of the circu-
lator, and into the load resistance. The load
is effectively isolated from the source by the
circulator if, as will also be assumed for this
discussion, its impedance matches that of the
waveguide characteristic impedance over the
operable band of the amplifier, and if the
circulator functions without reflection over
this same band.

The reflected voltage traveling wave which
returns along the waveguide from the diode to
the load resistance is greater than the incident
wave on the diode from the source, since the
‘diode is biased to operate in its negative
resistance region. Thus, the voltage reflection
coefficient along the waveguide between the
circulator and the diode is greater than unity.
The magnitude of the voltage reflection coef-
ficient along this waveguide is a measure of
the voltage gain of the amplifier. The usual
standing wave measuring technique, wherein
the standing wave ratio and wave position

WAVEGUIDE
|
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are plotted on a SMITH CHART, is appli-
cable for determining the negative input
impedances vs. [requency locus and the re-
lated reflection coefficient (amplifier gain).
In addition to the gain, the same data yields
information c¢oncerning the stability of the
amplifier, and the design of a tuner which is
necessary to peak the gain of the amplifier at
a selected frequency, as will be seen.

12.7.2 Representation of Tunnel Diode
Equivalent Circuit on Negative
SMITH CHART

The first step in the analysis of the
reflection amplifier characteristics is to repre-
sent the tunnel diode by its high-frequency
small-signal equivalent circuit whose element
values are normalized to the positive character-
istic impedance (or characteristic admittance
where more convenient) of the waveguide
with which it is used. This representation,
with typical values for the equivalent circuit
elements, is shown in Fig. 12.10. As with
any high-frequency negative-resistance device,
there is an unavoidable shunt capacitance C
and series inductance L. These reactances
will, of course, be frequency dependent,
which effect must be taken into account in
the analysis. The small inherent capacitance

-— TOWARD SOURCE

TERMINAL PLANE —-|

Yp = 092 Mho

0 2giV)2 ~.016 Mho—

Fig. 12.10.  Small-signal equivalent circuit of a tunnel diode.
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C=30 pF
T =10bm
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C of the diode varies slightly with bias;
however, this variation may generally be
ignored. The diode conductance g(V) is a
function of its bias voltage V. The character-
istic admittance Y, of the waveguide (coaxial
transmission line in this case) is assumed to be
0.02 mho. Let it be required to plot the above
diode admittance characteristics on a SMITH
CHART, at a frequency of 2.0 GHz.

The normalized negative conductance of
the diode is —0.16/0.20 = 0.8 mho. This is
plotted at point A on Fig. 12.11.

The normalized shunt capacitive suscep-
tance +jB /Y, at 20 GHz is 2=fC)/Yy = +j 1.9
mho. The normalized admittance of this
parallel combination is 0.8 + ;1.9 mho,
which value is located at point B. The
effect of adding 1 ohm of positive serics
resistance r_ is next represented; however,
before this is done point B, which is on
negative conductance coordinates, is trans-
ferred to equivalent negative resistance co-
ordinates at point €. Since the normalized
series resistance r /Z; = 0.02 ohm is positive,
the effect of adding this to the negative
resistance af point C is to move it to point D
(a less negative point on the negative resist-
ance coordinates). The addition of normal-
ized series inductance of 0.5 nH, whose
inductive reactance +jX; /Z, at 2.0 GHz is
(22fL)/Zy = 1.26 ohm, to the impedance at
point D is to move it to point E, which is
the desired normalized impedance of the
diode at its input terminals. The equivalent
normalized input admittance Y;/Y, =~1.25 +
7 2.5 is located at point F.

12.7.3 Representation of Operating
Parameters of Tunnel Diode

The effect on the diode’s input admittance
of changing two operating parameters, namely,
the frequency and the negative conductance

(bias adjustment), can be determined by
standing wave measuring techniques, and the
results can be represented on the negative
SMITH CHART by two intersecting families
of curves, shown for a typical untuned diode
reflection amplifier on Fig. 12.12. The
dashed curves represent loci of input admit-
tances resulting from changes in diode negative
conductance at various operating frequencies.
The solid curves represent loci of input admit-
tances resulting from changes in operating
frequency at various negative conductance
values established by the bias voltage. All
points within the shaded area occupied by
these two families of curves represent a
specific combination of operating frequency
and negative conductance. Point F is trans-
ferred directly from Fig. 12.11 to Fig. 12.12.
Point g, is the diode’s negative conductance
at zero operating frequency (point A on Fig.
12.11). Point g, is the conductance at the
self-resonant frequency, at the diode terminals.
Point g,  is the diode admittance at the
resistance cutoff frequency. This is the
frequency above which any negative-resistance
device cannot amplify (or oscillate) because its
total positive resistance equals its negative
resistance, and consequently the real part of
its input impedance equals zero.

From Fig. 12.12 it is possible to observe
several significant facts concerning the stability
and gain of this reflection amplifier. As
previously discussed, the center point of the
negative SMITH CHART coordinates is the
point where the reflection coefficient is in-
finity. An infinite reflection coefficient
corresponds to infinite gain, and infinite gain
in a reflection amplifier is the criterion for
oscillation. If it is not possible, by means of
adjustment of the operating frequency or the
conductance, to include the center point of
the negative SMITH CHART coordinates
(infinite reflection coefficient point) within
the shaded operating area of Fig. 12.12, the
amplifier will be stable. If the amplifier is
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2.0 GHz,

Representation of circuit of Fig- 12.10 on negative SMITH CHART at F

Fig. 12.11.




ELECTRONIC APPLICATIONS OF THE SMITH CHART

154

0,47

&1

oA COMDUCTANCE COM‘FONE;N_I{

R
Zq

)

So

t

T

,.

NEGATIVE RESISTANCE COMPOMENT|

REFLECTION

COEFE. Gtk

voL |PwR DB
19 -+ 10—

Tu ]

e

1 10 -
T ]

Tie 2w
a3+

s b
4L ag wg
[Ex g
151 40+
L4 1

I
¥t and
BES R
20% 40 &D

TFee roq

T el

T 2.0
o4 1

M. o o]
wF 2. 4

® Lz J

PR T ™7

=

o 4o 1

x T ]

2 1aTwo pq.]

o - 200

£ 25 1 o0 254
Food.

S

il o[ &l

o b L

o E 1

@ .m Lz

L -

noE *U

- 1=

4 Jo T

3 ]z L

a ]

£ "% osim
L+ L

7 -l

i [
LA B -]

v kb
oe T

ERE T

Fooar
B A ! C
oz .

] {or

Taow
o] LS
o | +
o - w240l
=]
14 I
1=}

- = e
wdg + o2
‘az m a1

S U
T+ ™
44300 |S411S g9 | DIV
£507 | 801 NI | oA
FE0 1 NENVEL MM SMIONTLE

tive SMITH CHART.

ion amplifier on a hega

Representation of admittance of an untuned reflect

Fig. 12,12,



operated at a low frequency and the bias is
adjusted so that the diode admittance is
essentially equivalent to a normalized negative
conductance of 0.8 mho (which condition
prevails at point g, on Fig. 12.12) the ampli-
fier gain, as measured on the radial power
reflection coefficient scale, is & maximum
and, in this example, is 19.7 dB. At all other
operating points (specific combination of
frequency and bias settings) within the shaded
area the gain is less than 19.7 dB. At point G,
for example, where the frequency is 1 GHz
the gain is 6.4 dB.

12.7.4 Shunt-tuned Reflection Amplifier

If it is required to peak the above amplifier
gain at a particular frequency such as 1.0 GHz,
this may be accomplished by employing a
transforming circuit which causes point G
on Fig. 12.12 to move closest to the center
of the negative SMITH CHART. By adding
a shunt inductance across the diode’s equiva-
lent circuit of Fig. 12.10, for example, point
G may be shifted downward along a line of
constant conductance, {o the zero susceptance
axis of the chart. The required value of
normalized inductive susceptance is seen from
the chart to be —j 1.06 mho. The inductance
corresponding to this susceptance at 1 GHz
is readily calculable from the simple relation-
ship L = 1/juBY, to be 7.5 nH, All points on
the plot of Fig. 12.12 are similarly shifted by
the effect of this shunt inductance to their
respective positions indicated on Fig. 12.13.
The admittance at point G on Fig. 12.12 is
thus transformed to a normalized negative
conductance of —0.92 mho on Fig. 12.13.
From the power reflection coefficient scale,
the amplifier gain at 1.0 GHz is found to be
27 dB. It is peaked at this frequency since
" no other point within the shaded area of
Fig. 12.13 is closer to the center of the chart.
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Since the reflection gain is less than infinity,
the amplifier will not oscillate at 1.0 GHz with
any other bias adjustment. However, in the
frequency range between 1.2 GHz and 5.0
GHz, as seen from Fig. 12.12, the normalized
negative conductance component of the diode
admittance is greater than minus one. If, for
example, the diode’s admittance was tuned
to zerc susceptance with a shunt inductance
in this frequency range the resultant conduct-
ance would place the center of the SMITH
CHART coordinates inside an area where the
diode is operable. Thus, over a limited range
of bias settings in this frequency range the
diode reflection amplifier would oscillate.

There are, of course, other more compli-
cated circuits, including distributed circuits
composed of waveguide sections, which will
permit stable operation in the higher frequency
range over which the diode exhibits negative
resistance or negative conductance character-
istics. In one such circuit a shunt capacitance
is located at a position along the waveguide
toward the source from the diode’s terminals,
where the conductance is of the proper value
to provide the desired amplifier gain (by
control of reflection coefficient magnitude).
The value of capacitance is adjusted to tune
out the inductive input susceptance of the
waveguide at the chosen frequency, and to
thereby peak the amplifier gain at this fre-
quency. Thus, this circuit allows some inde-
pendent control of gain and operating fre-
quency.

12.8 NEGATIVE SMITH CHART

The general-purpose negative SMITH
CHART shown in Fig. 12.5 is reproduced as
the fourth of four translucent plastic charts
whose function is described in the Preface
and which is contained with the other three
in an envelope in the back cover of this book
(Chart D).
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13.1 USE CATEGORIES

he many uses of the SMITH CHART may

conveniently be classified as “basic,” “speci-
fic,” and “special.” The more common uses
in the first two categories, in which procedures
for solving problems will be evident from the
material which has been presented in previous
chapters, are listed below. These lists are
followed by descriptions of some of the more
important “special” uses of this chart.

13.1.1 Basic Uses

1. For evaluating the rectangular compo-
_nents, or the magnitude and angle of the input
impedance or admittance, voltage, current,
and related transmission-reflection functions,
at all positions along a uniform waveguide.
These related transmission-reflection functions
include:

a. Complex voltage and current reflec-
tion coefficients.

b. Complex voltage and current trans-
mission coefficients.
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c. Power reflection and transmission
coefficients,

d. Reflection loss.

¢. Return loss.

f. Standing wave loss factor,

g. Amplitude of maximum and mini-
mum of voltage and current standing
wave, and standing wave ratio.

h. Shape, position, and phase distribu-
tion along voltage and current standing
waves.

2. For evaluating the effects of waveguide
attenuation on each of the above parameters
and on related transmission-reflection func-
tions at all positions along a waveguide.

3. For evaluating input-output transfer func-
tions,

13.1.2 Specific Uses

1. For evaluating the input susceptance or
reactance of open- or short-circuited wave-
guide stubs.

2. For evaluating the effects of shunt sus-
ceptances or conductances, or series reactances
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158 ELECTRONIC APPLICATIONS OF THE SMITH CHART

or resistances, on the input admittance or
impedance, respectively, of waveguides.

3. For displaying or evaluating the input
impedance or input admittance characteristics
of resonant or antiresonant waveguide stubs,
including bandwidth and @, or inversely, for
determining bandwidth or @ of waveguide
resonators.

4. For design of impedance matching cir-
cuits employing single or multiple open- or
short-circuited stubs.

5. For design of impedance matching circuit
employing single or multiple slugs.

6. For design of impedance matching cir-
cuijts employing single or multiple quarter-
wave line sections.

7. For displaving loci of passive lumped
circuit impedance or admittance variations
attending changes in the circuit constants.

8. TFor displaying loci of waveguide input
impedance or admittance variations attending
changes in operating parameters of active
terminating circuits.

9. For converting impedances to equivalent
admittances.

10. For converting series to equivalent paral-
lel-circuit representations of impedance or
admittance.

11. For converting complex numbers to their
equivalent polar form.

12. For converting the series circuit repre-
sentation of impedance to its equivalent
parallel circuit and the parallel circuit repre-
sentation of admittance to its equivalent
series circuit.

13. For obtaining the reciprocal of a complex
number of the geometric mean between two
complex numbers.

13.2 NETWORK APPLICATIONS

It is generally known that the image im-
pedance operation of any four-terminal passive
symmetrical network can be related to the be-

havior of a uniform transmission line insofar
as the terminals are concerned [10]. The
SMITH CHART of Fig. 8.6 is well suited to
determining the input impedance character-
istics of any four-terminal symmetrical passive
network, filter, attenuator, etc.

The three constants which completely deter-
mine the operation of any such network are
(1) the image impedances Z 11 and Z 1z at each
end and (2) the image transfer consfant 8.
The image impedances of a symmetrical net-
work may be thought of as corresponding to
the characteristic impedance of a uniform
line. When the network is not symimetrical,
it has a different image impedance as viewed
from each end. In this case the equivalent
line is unsymmetrical and has a transforming
action upon the load impedances. The
image transfer constant, which is the same in
gither direction through the network, is anal-
ogous to the hyperbolic angle of the equiv-
alent transmission line, the real part corre-
sponding to the attenuation constant and the
imaginary part to the phase constant of the
transmission line.

All three of these parameters can be evalu-
ated from the open- and short-circuited im-
pedance of the network according to the
following relations:

Y2

le = (Zoczsc) (13'1)
2
Zy, = (2], 70 (13-2)
and
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where Z . and Z_  are the impedances at the
input terminals of the network with the




output terminals open- and short-circuited,
respectively, and Z, . and Z/  are the imped-
ances at the output terminals with the input
terminals open- and short-circuited, respec-
tively.

To obtain the input impedance, for example,
of a four-terminal symmetrical passive network
using SMITH CHART A, proceed as follows:

1. Normalize the load impedance with re-
spect to the image impedance at the load
terminals of the network Z,, and enter the
chart at this point.

2. Move radially toward the center of the
chart an amount corresponding to the attenu-
ation constant of the network in dB. (Use
radial “Atten. 1 dB Maj. Div.” scale at upper
right, transversing the proper number of dB
steps.)

3. Move clockwise an amount equal to the
phase angle of the image transfer constant
using the outermost peripheral scale labeled
“Wavelengths Toward Generator” (one degree
equals 1/360 wavelength) and obtain the
normalized input impedance of the network
by multiplying the normalized input imped-
ance by the image impedance at the input
terminals Z, ;.

13.3 DATA PLOTTING

Measured or computed data on waveguide
components is frequently plotted directly on
the coordinates of the SMITH CHART for
the purpose of analysis and evaluation of
the characteristics of the device. For example,
the envelope of the plotted data may be
important for evaluation of the overall capa-
bilities of impedance matching devices such
as stubs, slugs, etc. A single asymmetrically
pointed tuning plug which is screwed into
the broad wall of a uniconductor waveguide
in an off-center position is one type of
* matching device which will serve to illustrate
this use of the chart.
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If an asymmetrically pointed plug is allowed
to protrude into a match-terminated wave-
guide it will produce a reflection whose
magnitude and phase will change in some
systematic way as the plug is screwed pro-
gressively deeper into the waveguide. A plot
of this changing impedance on a SMITH
CHART will reveal a scanned pattern of the
input impedance locus at some reference
position along the waveguide.

In order to determine the envelope of
impedances at a given frequency within which
any load impedance on the waveguide may be
matched to its characteristic impedance with
the asymmetrical tuning plug the problem
may be turned around, for purposes of
gathering data, to one of determining what
resultant impedances can be obtained at a
fixed reference position along the waveguide
as the plug is continuously screwed in. The
“reference position” may be at the center of
the plug or at half-wavelength intervals toward
the generator therefrom. The trace on the
SMITH CHART taken by the resultant im-
pedance vector is plotted in Fig. 13.1 for ten
turns of the asymmetrical tuning plug con-
figuration illustrated therein.

It can then be assumed that input im-
pedances which are capable of being matched
to the characteristic impedance of the wave-
guide by this plug will have conjugate values
to those plotted in Fig. 13.1. Thus, when the
plug protrudes into the waveguide its capacitive
susceptance cancels the inductive input sus-
ceptance of a conjugate admittance. In its
most outward position the plug is seen to be
equivalent to an inductive susceptance which
accounts for part of the area scanned lying in
this region of the chart.

The effective diameter of the plug in guide
wavelengths will determine the angle of the
sector of the impedance envelope on the
SMITH CHART which is scanned. This is
seen to be roughly 200° in Fig. 13.1 which
corresponds to an effective plug diameter of
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Fig. 13.1. Locus of impedances resulting from insertion of asymmetrical tuning screw into match-terminated waveguide, ten tumns
(conjugate impedances may be matched to Z, I




200/360 times one-half wavelength, or ap-
proximately 0.28 wavelength. The largest
circle which can be inscribed within the
scanned impedance envelope, and which is
centered on the SMITH CHART coordinates,
in Fig. 13,1 corresponds to a standing wave
ratio of 1.58 (4 dB), indicating that this
tuning plug is capable of eliminating re-
flections of any phase which would produce
standing waves between unity and this maxi-
mum value.

The plot in Fig. 13.1 also shows the effect

of the pitch of the thread. A finer thread
would cause the plug to advance more slowly
into the waveguide as it is rotated, and will
produce a larger number of scan lines within
the same scanned area.

Thus, one example is seen of how the plot-
ting of measured data reveals information con-
cerning the design of a particular waveguide
device; specifically, in the case illustrated, this
includes the plug diameter, depth of penetra-
tion, and pitch of the threads.

13.4 RIEKE DIAGRAMS

One of the early uses of the SMITH CHART
was for plotting constant-power and constant-
frequency contours of magnetron oscillators
used in World War II radar equipments.
Subsequently, the chart has been widely used
for displaying these same load properties of
electron tube oscillators. The reason for
using the SMITH CHART for this purpose is
that the load characteristics of electron tube
oscillators are in general a function of the
complex load impedance, which is conven-
iently represented over its entire range of
possibie values by these coordinates.

A plot of the load characteristic of oscil-
lators on a SMITH CHART is called a Rieke
diagram. A typical Ricke diagram [24,33]
consists of two families of curves, one repre-
senting contours of constant power and the
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other contours of constant frequency as shown
in Fig. 13.2 for an X-band Klystron oscillator
tfube which operates in the frequency range
from about 8,500 to 9,650 GHz. From a
Rieke diagram one may select a load imped-
ance which represents the best compromise
between power output and frequency stability.
For example, in Fig. 13.2 such a point is
evidently near a normalized load impedance
of 2-7 0.9 ohms.

In general, on a Rieke diagram the constant
power contours roughly parallel the contours
of constant conductance on a SMITH CHART
while the constant frequency contours roughly
parallel constant susceptance contours. The
degree to which they depart from this general-
ization is representative of the degree to which
the equivalent circuit of the oscillator departs
from a parallel circuit combination of G and
iB, G being the parallel combination of the
negative conductance of the oscillator, the
positive conductance of the load, and the
electronic conductance associated with energy
conversion within the tube, the summation of
which under stable operating conditions is
zero. This summation is also assumed to be
constant with frequency.

13.5 SCATTER PLOTS

Another application of the SMITH CHART
which is uvseful for determining differences
between intentionally alike circuit components
is the scatter plot. Such a plot shows the
effects of these differences on any or all of the
parameters which the SMITH CHART inter-
relates. One example is a plot of the measured
distribution of the input and output admit-
tances of an L-band microwave transistor, as
shown in Fig. 13.3. The area of the scatter
plot can be made proportionately larger by
showing only that portion of the chart which
is of interest.
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13.6 EQUALIZER CIRCUIT DESIGN

The transmission coefficient magnitude and
angle scales for the SMITH CHART, as shown
in Fig. 8.6, make it practical to design shunt-
impedance or seriessadmittance equalizer cir-
cuits therefrom. A rotation of the transmission

.—-f;"

Rieke diagram on a SMITH CHART for an UHF electron tube oscillator.

coefficient scales with respect to the chart co-
ordinates (which can readily be accomplished
by use of the transmission coefficient overlay
of Fig. 5.4) extends the design possibilities of
the SMITH CHART to include shunt-admit-
tance or series-impedance equalizer circuit
design. The method has been described in the
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Fig. 13.3.  Scatter plot on a SMITH CHART of input and output distribution of admittances for a microwave transistor

{conductance coordinates, Y 5 =20 mish.

literature [111]. It will suffice here to
illustrate one such example of the use of the

SMITH CHART.
13.6.1 Example for Shunt-tuned Equalizer

The response curve of an electron tube
audio amplifier whose gain-vs.-frequency char-

. acteristic it is desired to flatten or “equalize”

is shown in Fig. 13.4 (curve A). This
particular amplifier tube has an internal plate
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Fig. 13.4. Typical response characteristics of anh electron
tube audio amplifier and equalizer circuit; before equalization
{A), equalizer response {B}, and after equalization {C).
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resistance R of 3,000 ohms and works into
a load resistance R, of 1,000 ohms. An
equalizer circuit consisting of a parallel combi-
nation of resistance, inductance, and capac-
itance is to be inserted in series with B and
R; as shown within the dotted rectangle in
Fig. 13.5.

Aip = 3000
1000~ OHM
LOAD

/\;_,q
Fig. 13.5. Shunt tuned equalizer circuit [in dotted
rectangle),

'|
': -

Independent control of these three equalizer
circuit elements makes it possible fo accom-
plish three independent results, viz., (1) to
tune the equalizer circuit 1o resonance at any
desired frequency, (2) to add any specified
loss at the resonant frequency, and (3) to add
some other specified loss at a frequency which
is at a specified frequency off resonance.

In the example under consideration, it
would be desirable (1) to tune this circuit
to resonance at 10 kHz, that is, the frequency
where the gain peaks, and to introduce 3.5 dB
loss at this frequency, (2) to introduce a
loss of 1.0 dB at a frequency of 5 kHz.
This will then result in an overall loss char-
acteristic for the equalizer circuit as shown
in Fig. 13.4 (curve B), which when combined
with curve A in this figure will result in the
flattened characteristic shown in curve C.

The procedure for establishing the correct
values for each of the three shunt circuit
elements from the SMITH CHART is (with
reference to Fig. 13.6) as follows:

1. Obtain the required value of normalized
conductance in the equalizer circuit to pro-
duce 3.5-dB loss. To do this, enter the chart
on its admittance coordinates at the infinite
admittance point A, and move to the left

along the zero susceptance axis a distance
corresponding to 3.5 dB (the loss needed at
10 kHz) on the voltage (or current) trans-
mission coefficient (dB) scale in Fig. 5.2.

Note: A count of 3.5 dB from the
extreme right-hand end of this scale (6-dB
gain point) locates the proper position along
this scale at its 2.5-dB point, corresponding
to point B in Fig. 13.6.

Observe that point B falls on the 2.0 normal-
ized conductance circle. Thus the normalized
conductance of the equalizer circuit must be
2.0.

2. Obtain the required value of susceptance
in the equalizer circuit which will provide a
loss of 1 dB at a frequency of 5 kHz. To do
this, proceed from point B clockwise around
the 2.0 conductance circle to the point C
where this circle intersects the 1-dB contour
of the aforementioned transmission coeffi-
cient scale. Observe that point C falls on the
4.0 normalized susceptance curve. Thus, the
normalized susceptance of the equalizer circuit
must be 4.0.

Finally, the following steps must be taken
to evaluate the required resistances R, induct-
ance L, and capacitance C of the equalizer
circuit elements.:

1. Determine the normalizing value R,
which is the total loop resistance of the circuit,
namely,

Ry = R, + R, (13-4)
and which in the above example is 4,000
chms.

2. Observe that at resonance (10 kHz in
the above example),

0gCRy - ——— = 0

(13-5)

and off resonance {5 kHz in the above
example)
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IMPEDANCE OR ADMITTANCE COORDINATES
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Evaluation on a SMITH CHART of conductance and susceptance of elements of shunt-tuned equalizer circuit.
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. 4.25 x 1073 (13-8)
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and

L 507 . 108
Ry

(13-9)

Thus, in the example given,
R, = 4,000 ohms and GR, = 2.0

from which

-1— or B = 2,000 ghms

G
Also, from Eq. (13-8),

C = 0.0106 4F
and from Eq. (13-9),

L = 23.9mH

13.7 NUMERICAL ALIGNMENT CHART

Although not specifically intended for gen-
eral-purpose arithmetic and trigonometric cal-
culations, the outer circular boundary line of
the coordinates of the SMITH CHART, and
the resistance axis (with the normalized scale
designations along it), can conveniently be
used as an alignment chart to perform many
of the numerical operations of an ordinary
slide rule.

The more conventional of the mathe-
matical operations are listed in Table .13.1
along with corresponding geometrical con-
structions and numerical results of specific
examples as obtained from Fig 13.7. As
with the slide rule, the decimal point can be
moved to accommodate a wide range of
numerical representations, for example, 4.0
on the chart scales also can represent .04, .40,
40., 400., etc., provided that the decimal
point is correspondingly moved in the solu-
tion,

The angle o« for the tangent and cotangent
is projected to the chart coordinate boundary
line (at point L. on Fig. 13.7} along a straight -
line from the peripheral transmission coef-
ficient angle scale value to its origin at point
0.0. The sine and cosine functions of « are
not directly obtainable from the SMITH
CHART but should the need arise their
values can be computed from corresponding
values of the tangent function from the
following relationships:

. tan o
smnmg = ————
1+ tan2 oV (13-10)
1 13-11
cosg = — ( }

{1 + tan®a)l2

The symbol (1) at the intersection of a
construction line with the resistance axis
indicates that the line must always be drawn
mutually at right angles to the resistance axis.

13.8 SOLUTION OF VECTOR TRIANGLES

If the magnitude and either the resistance
or reaciance component of any impedance is
known, the remaining component can readily
be determined on the SMITH CHART. This
is possible because of a unique property of a
one-eighth wavelength section of lossless
transmission line. If such a lin¢ is terminated
in any pure resistance whatscever the magni-
tude of its input impedance will equal its
characteristic impedance.

To make use of this property of an eighth-
wavelength line in the solution of vector
triangles, a vertical line connecting points
+ 71.0 and — j1.0 at the periphery of the
impedance coordinates is first drawn across
the coordinates of the SMITH CHART, such
as Chart A in the cover envelope. This line
will trace the locus of all input resistance and




reactance components of an eighth-wave-
length line which is terminated in any load
resistance from zero to infinity,

For example, suppose that the magnitude
of an impedance vector is known to be 275
ohms and its resistance component is 165
ohms. The corresponding reactance com-
ponent is desired. The procedure is to first
normalize the known input impedance com-
ponent with respect to the known impedance

magnitude; thus,

=4

R _ 16 44
|Zg| 275

The next step is to find X/Z; by entering the
SMITH CHART at the point along its resist-
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ance axis where R/Z; = 0.6 and then by
moving upward along the 0.6 normalized
resistance circle to the point where it inter-
sects the vertical line representing the one-
eighth wavelength position. At this inter-
section, the normalized value of the desired
reactance component X/Z, is found to be

X .08

Zy

If the magnitude of the reactance com-
ponent had been known and the resistance
component was desired, the procedure is quite
similar. In this case the SMITH CHART is
entered at its periphery where X/Z; = 0.8,

Table 13.1. Results of Numerical Qperations from Fig. 13.7

OPERATION CONSTRUCTION EXAMPLE
PRODUCT AB=C 4,+.5 = 2
C/A = B 2.74. = 5
QUOTIENT
C/B = A 2./.5 = a
/0 = E . 7.33 = 3
RECIPROCAL
I/E = D I./3 = .33
SQUARE FE = ¢ 2.2 = 4
SQUARE ROOT 6% = F 42 = 2
an'’?=n {5-1.5)"% = g7
GEOMETRIC MEAN
I/H = H/J 5/.87 = .87/1.5
TANGENT ton a = K tan 30° = .58
 COTANGENT cot @ = L col 30° = L.75
ARC TANGENT ton! K =a tan”! 58= 30°
ARC COTANGENT cot' L =a cot” 175 = 30°
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and this reactance circle is then followed And again, since Z, = 275, the resistance
downward to the intersection with the vertical component

line representing the one-eighth wavelength

position, where the value of the normalized R - 0.6 x 275 = 165 ohms

resistance component is observed to be \

Vector triangles representing voltages, cur-
R _ 0.6 rents, and admittances are similarly solved on
Zy the SMITH CHART.
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Fig. 13.7  Constructions for numerical operations on a SMITH CHART as summarized in Table 13.1.




14.1 CLASSIFICATION

'One important class of instruments displays

data electronically on a SMITH CHART.
Some of these instruments employ a translu-
cent SMITH CHART attached to the face of a
cathode ray tube; others employ an opaque
SMITH CHART on an electrically operated
plotting table. In either of these the chart
serves as the reference coordinate system.
Such devices generally sample the amplitudes
and phases of forward- and backward-traveling
waves, respectively, at the output ports of a
directional coupler. The samples are trans-
lated by sine and cosine function generators
to control the position of the cathode ray
spot, or of the pen on the plotting table. By
using sweep-frequency oscillators such devices
can display a large amount of data in a brief
interval of time. Their detailed features and
operation are best described by the individual
manufacturer.

Other types of SMITH CHART “instru-
ments” which are described herein are purely

crarer |4

Smith
Chart
Instruments

mechanical in operation, and are thus more
analogous to the ordinary logarithmic-scaled
slide rule.

14.2 RADIO TRANSMISSION LINE
CALCULATOR

The calculator shown in Fig. 14.1, con-
structed in 1939, employs a pair of cardboard
disks, and a radial arm pivoted from the
center. This arrangement allows separate
control of the zero position on the outer
peripheral scales which were printed on the
larger disk, and the position of the radial arm
with its attenuation and SWR scale (expressed
as a ratio less than unity). A slidable cursor
permits the establishment of reference points
on the chart coordinates. This calculator,
currently out of print, was superceded in 1944
by the improved version shown in Fig. 14.2.

The following instructions are printed on
the back of this early “Radio Transmission
Line Calculator™:

169
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RADIQO TRANSMISSION LINE CALCULATOR
INSTRUCTIONS

The Calculator may be used for open-wire or coaxial transmission lines. Il gives the impedance at
any position along the line, standing-wave amplitude ratio, and attenuation. [{ the power is known,
the voltage and currcnt at any position along the linc is readily calculable from the impedance
information obtained.

The curved lines on the central disk are simply resistance and reactance coordinates upon which
all impedances, both known and unknown, can be read. These coordinates indicate series compo-
nents of the impedances and are labeled as a fraction of the characteristic itnpedance of the line used.

The scparately rotatable scale around the rim of the calculator provides the means for measuring
the distance® along the iransmission line between any two points in question. (Any distance in
excess of a half wavelength can be reduced to an equivalent shorter distance to bring it within the
scale range of the calculator by subtracting the largest possible whele number of haif wavelengths.)

Attenuation in decibel infervals and current or voltage ratio scales are plotted along a rotatable
radial arm. This arm and its slider also provide a cross-hair-indicating mechanisin,

EXAMPLE A. To find the impedance at any given point along a line when the impedance at any
other point is known:

1, Adjust the cross hair formed by the lines on the radial arm and slider to intersect over the
known Impedance peint.

2. Rotate only the outer “distance’ scale until its O point lines up with the line on the radial
arm.

3, Rotate only the radial arm (with its slider fixed thereon) the required distance as measured

along the outcr scale, cither “towards load™ or “towards gencrator™ as the case may be,
and rcad unknown impedance under the new cross-hair location.

*l-or coaxial lines with insulztion, distance is in effect increased by the faclor ./-K where K = diclec, const.

Fig. 14,1,

Radio transmission line calculator [101].




14.3 IMPROVED TRANSMISSION LINE

SMITH CHART INSTRUMENTS

4, To correct for attenunation, move the slider only along the radial arm in the direction
indicated thereon the desired number of decibel intervals before reading the unknown
impedance.

EXAMPLE B, To find the impedance at any given point along a line (with respect to the position

af a current or voltage minimum or maximum point) when the standing-wave amplitude ratio is known:

1.  Point the radial arm along the resistance axis in either direction depending upon whether
measurements are to be made from a minimum or maximum current or voltage point. (A
current minimum and voltage maximum occur simultanecusly at a resistance maximum
point, while 2 current maximum and voltage minimum occur simultancously at a resistance
minimum point.}

2. Rotate only the outer “distance™ scale until its 0 point lines up with the line on the radiai
armi.

3.  Move the slider along the ratio scale on the radial arm to the known standing-wave amptitude
ratio,

4, Rotate only the radial asm {with its slider fixed thereon) the desired distance from the
initial pure resistance point either “towards load” or “‘towards generator™ as the case may
be, and read the unknown impedance at the new cross hajr location.

EXAMPLE C, To find the standing-wave amplitudc ratio if the impedance at any point along the

lire is known:

1. Adjust the cross hair to intersect over the known impedance point and read directly the
standing-wave amplitude ratio on the ratio scale along the radial arm.

EXAMPLE D. To find the attenuation of a line when the input and load impedances are known:

1. Adjust the cross hair, formed by the lines on the radial arm and slider, to intersect over the
known input impedance point, noting the position of the slider along the decibel scale on
the arm.

2. Readjust the crosshair to intersect over the load impedance peint and again note the
position of the slider along the decibei scale.

3. The attenuation of the line is obtained by counting the number of decibel intervals along the
radial arm acress which it was necessary 1o move the slider.

Refer to: “*Transmission Line Calculator™
by P. H. Smith, Bell Telephone Laboratories,
Janugry 1939, Electronics.
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mission Line Calculator.” It provided addi-

CALCULATOR

The all-plastic calculator shown in Fig.
14.2 was first constructed in 1944, and has
been commercially available [16] without
alteration since that time. Its design is de-
scribed iIn a magazine article [102] by the
author in 1944 entitled “An Improved Trans-

tional radial scales, shown more clearly in
Fig. 1.4, and its coordinate system was gradu-
ated in a more orderly way. A newer and
larger combined calculator and plotting device
called a “computer-plotter” is shown in Fig.
14.11 [20].

The instructions printed on the back of
the calculator in Fig. 14.2 are:

RADIO TRANSMISSION LINE
CALCULATOR INSTRUCTIONS

The calculator relates the series components of impedance at any position along an open-wire or
coaxial transmission line to (1) the impedance at any other point, (2) the standing-wave amplitnde
ratio (SWR), and (3) the attenuation. It also relates the impedance to the reflection coefficient and
to the admittance and, in addition, provides a means for determining the equivalent parallel compo-
nents of impedance, If the power 2 is known the voltage and current at any position along the line are
readily calculable from impedance information ohtained (see Example F}.
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All impedances are read on the resistance and reactance coordinates on the central disk. These
coordinates are designated as a fraction of the characteristic impedance Z; of the line in order to
eliminate this parameter, which is a constant in any given problem.

The rotatable “wavelengths™ scale around the rim provides the means for translating impedances
at a given point along the line to another point a given distance® away. (Any distance in excess of a
half wavelength should be reduced to an equivalent shorter distance to bring it within the scale range
of the calculator by subtracting the largest possible whole number of half wavelengths.)

Attenuation in 1.0 dB steps and current or voltage SWR scales are plotted on the rotatable radial
arm {nearest index) together with scales which are a function of SWR. These include, to the left,
scales for minimwn and maximum values of current or voltage at node or antinode points (relative to
current or voltage on matched line), and the SWR expressed in dB;and to the right, loss coefficient due
to standing waves, reflection loss, and reflection coefficient magnitude. The cross hair index on the
arm provides the indicating mechanism for relating all parameters at any given point along the line.
EXAMPLE A. TO FIND SWR IF IMPEDANCE AT ANY POINT ALONG LINE IS KNOWN:

1. Adjust cross hairs to intersect over known impedance point and read SWR and related
parameters on the scales on radial arm.

EXAMPLE B. TO FIND IMPEDANCE AT ANY GIVEN POINT ALONG LINE (WITH RESPECT TO
POSITION OF A CURRENT OR VOLTAGE MINIMUM OR MAXIMUM POINT)
WHEN SWR IS KNOWN:

1. Align index on arm with resistance axis in the direction depending upon whether reference
point is a minimum or maxirmum current or voltage point. (A current minimum and voli-
age maximum are always at the same position as the resistance maximum point, i.e., along
resistance axis in direction of R/ZU = @, while a currenf maximum and voltage minimum
are always at the same position as resistance minimum point, Le., along resistance axis in
direction of R/Zy = 0.)

2. Move slider index zlong arm to known SWR.

3. Rotate only “WAVELENGTHS™ scale until its O point is aligned with index line on arm.

*For voaxial lnes with insulation. distance is effectively increased by 1/‘}2 where K = dielectric vonst.

%

Fig. 14.2,

45
|
:.
i
e

Improved transmission line calculator [102] .




EMITH CHART INSTRUMENTS

4, Rotate only arm (with slider fixed thereon) the desired distance in direction indicated on
“WAVELENGTH” scale and read unknown impedance at new cross hair focation.

5. Correct above impedance for attenuation by moving slider only along arm the desired
number of decibel intervals in the proper direction indicated thereon.

EXAMPLE C. TO FIND IMPEDANCE AT ANY GIVEN POINT ALONG LINE WHEN IMPEDANCE
AT ANY OTHER POINT S KNOWN:

1.  Adjust cross hairs to intersect over known impedance point.

2. Same as B(3), B(4), and B{5).

EXAMPLE D. TO FIND ATTENUATION OF LINE WHEN INPUT AND LOAD IMPEDANCES ARE
KNOWN:

1.  Adjust cross hairs to intersect over input impedance point and note position of slider index
on arm at scales designated ‘1 dB STEPS™ and “LOSS (dB)"

2. Readjust cross hairs to intersect over load impedance point and again noie paosition of
slider index on above scales.

3. The number of decibel intervais between the two slider index positions above on scales
designated ““1-dB STEPS™ gives the nominal attenuation of the line due to resistance,
etc, To this add the corresponding dB difference on the “LOSS (dB)" scale, which gives the
additional loss due to standing waves.

EXAMPLE E. TO CONVERT IMPEDANCES TO ADMITTANCES AND TO EQUIVALENT PARAL-
LEL COMPONENTS OF IMPEDANCE

1.  Equivalent admittances, as a fraction of the characteristic admittance, appear diametrically
opposite any impedance point. To read admittances, consider resistance cemponents to
be conductance components and reactance comporents to be susceptance components of
admittance. (Capacitance is considered to bc a positive susceptance and inductance a
negative susceptance.) No other change in scale designations, direction of rotation, etc., are
required for using calculator to obtain admittance relations to other parameters.

2.  Equivalent parallel components of impedance are the reciprocal of the equivalent admit-
tance values. (Use reciprocal “LIMITS™ scaie on arm.)

EXAMPLE F. TO FIND VOLTAGE OR CURRENT AT ANY POINT ALONG LINE:

P Kzl]
E = VBpae P Enin = ‘f" SWR Baax = VP x Z5 x SWR

P [ . .fPxSWR
SWR = 2, max Zg

Rpa, obtained from £(2).

I = /P/Rg.,

Tpin =

Refer to “Transmission Line Calculator™
by P. H. Smith, Bell Telephone Laboratories
Jan. 1939 and Jan. 1944 Electronics

THE EMELOID CO., INC.
HILLSIDE 5, N. J.

14.4 CALCULATOR WITH SPIRAL

CURSOR of note,
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logarithmic (equiangle) spiral cursor is worthy

The dual spiral cursor served several pur-

The cursor mechanism shown in Fig. 14,3

was devised by R. 8. Julian in 1944 at Bell
Telephone Laboratories. Approximately 100
calculators of this type were manufactured but
they were never made commerically available.
However, the ingenious design of the dual

poses, one of the more important of which
was to enable the attenuation scale to be
moved from the radial arm to the perimeter
of the chart. In this position the scale could
be expanded in length by a factor of at least
pi. Since the spiral cursor is adjustable with
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Fig. 14.3,

Transmission line calculator [18].

respect to the coordinates, as is also the
straight radial cursor, their intersection can be
made to coincide with any point on the chart
coordinates. Having thus set the two adjustable
cursors the peripheral attenuation scale can
be rotated until its zero position corresponds
to the position of the straight line segment at
the tip of the spiral. Finally, by rotating the
spiral cursor only to a desired setting on the
peripheral attenuation scale, the intersection
of the spiral and radial cursors will move a dis-
tance correspending to the change of the
attenuation. In this way it is not necessary
to count dB steps of attenuation as is
required for a fixed radial attenuvation scale
with a “floating” zero position.

By using the dual spiral curser, points on
the chart coordinates which are diametrically

opposite and at equal chart radius from any
selected point can be located without swing-
ing the single radial arm and its slidable cursor
through 180°. Thus, with this device im-
pedances can more readily be converted to
admittances.

A minor difficulty with the spiral cursor is
the ambiguity caused by more than one
intersection of the spiral with the straight
radial lines.

14.5 IMPEDANCE TRANSFER RING

A manual plotting device called an imped-
ance transfer ring is shown in Fig. 14.4. This
device [122, 2131 consists of a circular pro-
tractor graduated in wavelengths, and a narrow




Fig. 14.4,

diametrical scale {(with a slidable cursor) gradu-
ated in standing wave ratio. The impedance
transfer ring is intended for use with paper
SMITH CHARTS with a coordinate radius of
9.1 cm. (Kay form 82-BSPR shown in Fig.
8.6.)
The construction and operation of the im-
pedance transfer ring, with specific examples
of its use, is contained in a 29-page U.S.
Naval Electronics Laboratory Report [213].
A device which can accomplish the same
objectives as the impedance transfer ring,
called the Mega-Plotter and described in the

MATCHING BOARD

i} i
o e
: S0 3e0 p OFV Y
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following paragraphs, is commercially avail-
able | 14].

14.6 PLOTTING BOARD

A plotting board [204] designed to plot
impedances in the frequency range around 65
MHz is shown in Fig. 14.5. Such a device can
as well be designed to operate around any
other chosen frequency. This device depends
on the fact that the impedance at a point
along a transmission line is uniquely related
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The impedance transter ring and SMITH CHART mounted on
matching board [122].
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to the magnitude and phase relationships
between the voltages cr currents along the
line at discrete sampling points of known
separation. (See Chap. 11 on probe measure-
ments.) Probe spacings of approximately one-
eighth wavelength are used for the »lot*ing
board shown, and probe voitages are measured
with vacuum tube volimeters.

The impedance at a point in question is
determined from the SMITH CHART by the
intersection of three arcs whose radii are
proportional to the three respective probe
voltages,

An expanded center SMITH CHART (Kay
form 82-SPR shown in Fig. 7.2) is used with
this particular plotter, which enables a deter-
mination of the impedance with an accuracy
of about 10 percent. The three dials control
the position of a single pointer to which they
are connected through a system of cords and
springs. The angle between the cords is

FREQUEMCY
SCALE

FREQUENC YA
CONTROL

GAMNGING |

LEVERS
EXPANDED CHART
;. £ 7077A
oiaL no Y|
AUXILIARY PULLEY
ARM NO. 1
SRADIUS PULLEY
Fig. 14.5.  Plotting board for SMITH CHARTS [204]

L TARE-UP SPRING

proportional io the phase relationships be-
tween the probe voltages, and can be adjusted
to compensate for the change in eiectrical
length of the transmission line between fixed
probe positions as the frequency is varied over
a limited vange. This adjustment is accomgp-
lished for all three cords simultaneously by
varying the position of the pointer shown in
the upper left comer of Fig. 14.5. The
pointer is connected to all three arms on which
the dials are mounted through a pantograph
which controls the angular separation of the
cords.

The plotting board shown in Fig. 14.5 is
not commercially available,

147 MEGA-PLOTTER

The plotting board shown in Fig. 14.6 5
commercially available {14] under the trade

DIAL NO. 2
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Fig. 14.6.

Mega-Ptotter [14],

name ‘“Mega-Plotter.” The separately rotat-
able scales for this device are shown in
Fig. 14.7.

The Mega-Plotter is designed primarily o
facilitate the plotting of electrical {ransmission
line data on SMITH CHARTS such as Kay
chart forms 82-BSPR (SWR = 1.0 {o <) and
82-SPR (SWR = 1.0 to 1.59). However, this
plotting board accommeodates other commonly
used SMITH CHARTS, and polar reflection
charts of equal or smaller radius, if they are
printed on standard size (8% x 11 in.)} sheets.
It may also be used for plotting or reading out
data in polar form from antenna radiation dia-
grams, and as a general-purpose polar plotting
board.

SMITH CHARTS are held securely in place
on the board with a handy snap-on nickel-silver
fastener. A small hollowed point pin pierces
the paper chart center and provides a pivot for
a compass (not supplied) and for independ-
ently rotatable peripheral and radial scales.

A protractor provides adjustable peripheral
scales. On onec side these gre graduated in

wavelengths for measuring angular distances
on the coordinates of any SMITH CHART
from any initial peoint. On the other side,
the scales are graduated in degrees for general-
purpose polar piots.

Two diametrical straightedges are provided,
each with two commonly used radial scales of
correct iength for the above SMITH CHARTS.
One side of each of these straightedges is
blank, with a matte surface, to permit pencil
marking or pasting thereon any of the more
specialized scales which are printed across the
bottorn  of the aforementioned SMITH
CHARTS, or for marking thereon radial
scales for charts of other radii.

The straightedge on each of the diametrical
scales, like the inside straightedge on the
protractor, is intentionally offset from center
by about the amount a line would be offset if
drawn with a sharp pencil. When setting these
edges to the desired peripheral scale value, or
to coordinate points on the chart, allowance
should be made for this offset by using the
pencil point as a gauge.
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14.8 MEGA-RULE

The “Mega-Rule” shown in Figs. 14.8,
14.9, and 14.10 provides a convenient and
rapid means for comparing and evaluating ten
commonly used functions which specify trans-
mission and reflection characteristics of elec-
tromagnetic waves on waveguides. The ten
function values are plotted on a set of ten
parallel interrelated scales including an attenu-
ation scale printed in red. The voltage reflec-
tion coefficient scale thereon is linear, and
therefore is directly related to the radial
distance on a SMITH CHART. The rela-
tionship of individual values of these ten
scales to each other, and to the attenuation
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of the waveguide, is evaluated by means of a
slidable cursor. The most commonly used of
these functions is perhaps the standing wave
ratio S, to which all others are mathematically
related by the formulas on the back of the
Mega-Rule.

The Mega-Rule is applicable to any type of
uniform waveguide, for example, uniconductor
waveguide, coaxial cable, strip-line, or paraliel-
wire transmission line. The waveguide may
have any characteristic impedance. The ten
functions represented on the Mega-Rule scales
apply to any mode of propagation such as
the transverse electromagnetic (TEM) mode
in coaxial cables and paralle] wire transmission
lines, or any of the many transverse electric

o
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Fig. 14.8.  Mega-Rule [20].
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(TE, ) or transverse magnetic (TM, ) modes

in uniconductor waveguides.

When using the Mega-Rule for problems
involving dissipative loss (attenuation) it is
assumed that the waveguide is sufficiently
long so that the loss within a quarter wave-
length is a negligible fraction of the total loss.

Individual graduations on the ten scales of
the Mega-Rule are plotted from data computed
to seven significant figures. The values in
Table 14.1 may be interpolated should it be
desired to obtain more accuracy than is
possible by visual settings of the cursor on
the Mega-Rule scales.

The three columns in Table 8.1 express
the transmission-reflection function values for
the ten respective scales on the Mega-Rule in
terms of:

1. Incident / and reflected r traveling waves

of voltage or current,

2. Voltage or current reflection coefficient
magnitude p.

3. Voltage or current standing wave ratio 8.

The ten functions with their definitions
printed on the back of the Mega-Rule and
represented by the ten scales on the front are
as follows:

1. Voltage reflection coefficient—the ratio

of reflected to incident voltage.

2. Power reflection coefficient—the ratio
of reflected to incident power.

3. Returnloss in dB—the ratio of incident
to reflected power in dB.

4. Reflection loss in dB—the ratio of inci
dent power to the difference between
the incident and reflected power in dB.

5. Standing wave loss factor—the ratio of
mismatched- to matched-guide transmis-
sion loss.

6. Standing wave ratio in dB—twenty times
the logarithm to the base 10 of the
standing wave ratio (special use of dB).

7. Standing wave maximum-—the ratio of
standing-wave maximum to matched-
guide voltage (or current).

8. Standing wave minimum—the ratio of
standing-wave minimum to matched-
guide voltage (or current).

9. Standing wave ratio—the ratio of maxi-
mum to minimum of the standing wave
of voltage or current.

10. Attenuation—this scale relates the effect
of waveguide dissipative losses on all
other scales.

All above definitions are printed on the
back of the Mega-Rule.

14.8.1 Examples of Use

1. A given length of waveguide connecting
a radio transmitter to an antenna has an
attenuation (one-way dissipative loss) of 1.3
dB at a particular operating frequency. At
the antenna end of the waveguide, at this
frequency, the standing wave ratio is observed
to be 2,5 (8.0 dB).

It is desired to determine the total loss
incurred by the load mismatch and the
dissipative losses in the waveguide.

Enter the Mega-Rule by setting the cursor
to 2.5 on the standing wave ratio scale (no. 9),
or 8.0 dB on the standing wave ratio, dB,
scale (no. 6). Observe from scale no. 4 that
the reflection loss at the antenna (a non-
dissipative loss defined on the back of the
Mega-Rule) is 0.88 dB.

Next, slide the cursor 1.3-dB intervals in
the positive direction on the attenuation
scale, at the bottom. Now observe from
scale no. 4 that the reflection loss at the
input end of the waveguide is 0.47 dB. The
increase in dissipative loss, due to a reflected
wave in the waveguide, over the one-way
dissipative loss (attenuation) is obtainable
from the Mega-Rule by subtracting the re-
flection loss at the input end, that is, 0.47 dB,
from the reflection loss at the load end, that
is, 0.88 dB, to vyield 0.41 dB. The total
dissipative loss is, therefore, 1.3 dB plus
0.41 dB, or 1.71 dB.
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Table 14.1 Function Values at SWR Scale Divisions of Mega-Rule.

(1) {z) {3) {4 {5} {6) {7} {8} {9) {10}
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The total loss incurred by the nondissipative
load-mismatch at the input end of the wave-
guide (0.47 dB), plus the attenuation of the
waveguide (1.3 dB), plus the increase in
dissipative loss due to the reflected wave

(0.41 dB), is thus 2.19 dB. Of this total it
is possible to recover only the reflection loss
at the input end of the waveguide (0.47 dB),
by conjugate matching the transmitter imped-
ance to the input impedance of the waveguide
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rather than to its characteristic impedance, as
is sometimes done,

2. It is required to measure the attenuation
(one-way dissipative loss) in a section of
coaxial cable 50 feet long. For this measure-
ment the cable may be either open-circuited
or short-circuited at its far end, at which
point the power reflection coefficient is unity.
{This corresponds to a standing-wave ratio of
infinity.) The standing wave ratio at the input
end of this cable is 2.8, or 9.0 dB.

Enter the Mega-Rule at the extreme right
end, where the power reflection coefficient
is unity. The attenuation which the cable
would have if it were terminated in a matched
load is now obtained by sliding the cursor from
the initial setting to the position where the
standing wave ratio is 2.8 on scale no. 9, or
8.0 dB on scale no. 6, and then reading the
number of dB on the attenuation scale at
the bottom traversed by the cursor. The
result, in this case, is seen to be 3.25 dB
attenuation for the 50-foot length, or 0.065
dB per foot.

Alternatively, the attenuation may be ob-
tained from the Mega-Rule by reading the
round-trip loss on the return loss, dB, scale
no. 3, and taking one-half of the 6,5 dB
value read thereon, namely, 3.25 dB.

14.8.2 Use of Mega-Rule with
SMITH CHARTS

The voltage reflection coefficient scale
{scale no. 1) on the Mega-Rule is linear from
zero at its left end to unity at its right end.
Since individual values on all other scales are
related by the cursor to individual values on
scale no. 1, any or all of these scales may be
used to determine radial distance on a SMITH
CHART to the point where specific scale
function values apply. The left end of all
Mega-Rule scales correspond to the center

point of a SMITH CHART; the right end
corresponds to any point around its periphery.

If the radius of the SMITH CHART is not ~
the same as the length of the Mega-Rule, all
corresponding intermediate positions on the
chart and Mega-Rule can, of course, be
determined by simple proportionality, or
graphically by the use of proportional dividers.

The Mega-Rule is commercially available
[20].

14.9 COMPUTER-PLOTTER

A combined transmission line calculator and
plotting board is shown in Fig. 14.11. The
relatively large (10-in.-diameter coordinates)
plotting area is matte finished to permit
plotting data directly thereon which can be
easily erased. Ten radial scales as shown on
the Mega-Rule are provided on a radial arm
with a notched cursor for drawing circles with
a pencil on the coordinates. This newest and
largest SMITH CHART instrument is com-
mer¢ially available [20].

14,10 LARGE SMITH CHARTS

Large SMITH CHARTS are available com-
mercially in several forms, individually de-
scribed below. Such charts are particularly
useful for classroom instruction or for group
discussions around a table where viewing
distances are generally too great for the
conventional size (8% x 11 in.} charts. It is
also possible to achieve somewhat greater
accuracy with a larger chart.

14.10.1 Paper Charts

Large paper SMITH CHARTS are com-
mercially available from one supplier [15]
in 22% x 35 in. pads of approximately 75




sheets each. The charts are printed on a
relatively heavy paper in ted ink, and have
an actal coordinate diameter of 18% in.
These are direct enlargements of the form
shown in Fig, 3.3, and are the most cconom-
ical of the large charts which are available.
Eight of the radially scaled parameters, which
have been individually described herein, are
printed across the bottom of each chart.

fig, 1411, SMITH CHART Computer-Plotier [20].
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These pads have a clipboard backing and
may conveniently be supported on an ease’,
or laid flat on a table top.

14.10.2 Blackboard Charts

Large cloth SMITH CHARTS {30 % 45 in.}
with a black matte finished black backeround
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for erasable chalk marking are also commer-
cially available [20]. (See Fig. 14.12.) These
are printed with white characters and can be
rolled up and down on a curtain roller. The
blackboard chart is intended for basic in-
struction in a large classroom, and conse-
quently designations are in a bold type and
a coarse coordinate grid is employed. This
chart is not suitable for accurate solution of
specific problems.

SMITH CHART
IMPEDANCE OR ADMITTANCE COORDINATES

Fig. 14.12. Blackboard SMITH CHART for classroom use
[20].
14.11 MEGA-CHARTS

14.11.1 Paper SMITH CHARTS

Regular size (8% x 11 in.) SMITH CHARTS
in the following several forms, cach of which

is described herein, are commerciaily availabie
[14]. These “Mega-Chart™ forms are printed
in red ink on 15 1b. (approximately 7 lbs/1,000
sheets) translucent master paper, and packaged
in clear plastic envelopes of 100 sheets each,
either padded or loose:
1. Standard SMITH CHART-Form 82-
BSPR {9-66) (sce Fig. 8.6).
2. Expanded Center SMITH CHARTS--
Form 82-SPR (2-49) (see Fig. 7.2),
3. Highly Expanded Center SMITH
CHARTS—Form 82-ASPR (see Fig. 7.3).
Also, SMITH CHARTS with coordinates
having negative real parts (negative SMITH
CHARTS) are available in the same paper and
packaging, printed in green ink, in the follow-
ing form:
I. Negative SMITH CHART-Form 82-
CSPR (see Fig. 12.3).

14.11.2 Plastic Laminated SMITH CHARTS

All of the above chart forms (except the
negative SMITH CHART) are available [14]
laminated to a thickness of 0.025 in., with a
matte finish on the front for erasable pencil
marking. Abbreviated instructions for use of
SMITH CHARTS are printed on the back.

14.11.3 Instructions for SMITH CHARTS
Abbreviated sets of instructions for use of
the SMITH CHART, containing an explanation
of the chart coordinates and radial scales and
printed on single sheets, are available commer-
cially [141 printed on 50 1b offset paper.
These may be used for classroom instruction.

i'
i




Glossary —

Smith Chart
Terms

he terms which appear on SMITH CHARTS as coordinate designations, radially scaled

parameters, peripheral scale captions, etc., are individually defined and reviewed in this
glossary. A more complete discussion of these terms is found in applicable sections of the text.

Although relevant to all SMITH CHARTS, these terms are specifically associated with the
basic chart forms printed in Chaps. 6, 8 and 12, and enlarged chart forms described in Chap. 7.
Other SMITH CHARTS with which these terms are specifically associated include the normalized
current and voltage overlay in Chap. 4, and the charts with dual (polar and rectanguiar) coordinate
transmission and reflection coefficients in Chap. &.

In the definitions which follow, certain qualifying words and phrases are omitted when, in the
context in which the terms are used, these words and phrases will be understood to apply. For
example, the phrase “at a specified frequency” will apply to many of the definitions, and the
phrases “normalized input impedance of g uniform waveguide’ and “normalized input admittance
of a uniform waveguide™ will generally be understood to be meant by the shorter terms, “wave-
guide impedance” and “waveguide admittance,” respectively.

This glossary supplements definitions which have been formulated and published by the
Institute of Radio Engineers (IRE) [11] (presently the Institute of Electrical and Electronics
Engineers, IEEE), and by the American Standards Association (ASA-C42.65-1957) (presently
the United States of America Standards Institute, USASI), and upon which usage of such terms
in this text ts based.

Angle of Reflection Coefficient, Degrees reflection coefficient, ie., the total angle
reduced to a value less than +180°, is gen-

At a specified point in a waveguide, the erally indicated by this term. This relative
phase angle of the reflected voltage or current phase angle has a fixed relationship to a
wave relative to that of the corresponding specific combination of waveguide imped-

- incident wave. The relative phase angle of the ances or admittances and, accordingly, to a

185
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specific locus on the impedance or admittance
coordinates of a SMITH CHART, this locus
being a radial line.

Note: The angles of both the voltage and
the current reflection coefficients are repre-
sented on SMITH CHARTS by a single linear
peripheral scale, with designated values rang-
ing between 0 and +180°. The angle of the
voltage reflection coefficient is directly obtain-
able for any point on the impedance coordi-
nates by projecting the point radially outward
to this peripheral scale, labeled ““Angle of
Reflection Coefficient, Degrees.”” Similarly,
the angle of the current reflection coefficient
is directly obtainable for any point on the
admirttance coordinates. At any specified
point along a waveguide the angle of the
current reflection coefficient always lags that
of the voltage reflection coefficient by 180°.

Angle of Transmission Coefficient, Degrees

At a specified point along a waveguide, the
phase angle of the transmitted wave relative
to that of the corresponding incident wave.
The “transmitted” wave is the complex ratio
of the resultant of the incident and reflected
wave to the incident wave. The angle of the
transmission coefficient has a fixed relation-
ship to a specific combination of waveguide
impedances or admittances and, accordingly,
to a specific locus on the impedance or admit-
tance coordinates of a SMITH CHART, this
locus being a straight line stemming from the
origin of the coordinates.

Note: The angles of both the voltage and
the current transmission coefficients are repre-
sented on SMITH CHARTS by a single linear
angle scale at the periphery, referenced to the
origin of the impedance or admittance co-
ordinates, and ranging between 0 and +90°.
The angle of the voltage transmission coef-
ficient is directly obtainable for any point
on the impedance coordinates by projecting
the point along a straight line stemming from

the origin of the impedance coordinates to
the intersection of the peripheral scale labeled
“*Angle of Transmission Coefficient, Degrees.”
Similarly, the angle of the current transmission
coefficient is directly obtainable for any point
on the admiftance coordinates.

Attenuation {1 dB Ma;j. Div.)

The losses due to dissipation of power
within a waveguide and/or the radiation of
power therefrom when the waveguide is
match-terminated. On SMITH CHARTS at-
tenuation is expressed as a ratio, in dB, of the
relative powers in the forward-fraveling waves
at two separated reference points along the
waveguide.

Note: On a SMITH CHART, “attenuation”
is a radially scaled parameter. The attenu-
ation scale is divided into dB (or fraction of
dB) divisions which are not designated with
specific values, with an arbitrarly assignable
(floating) zero point. The number of attenu-
ation scale units (dB)} radially separating any
two impedance or admittance points on the
impedance or admittance coordinates of a
SMITH CHART is a measure of the attenua-
tion in the length of waveguide which sepa-
rates the two reference points.

Coordinate Components

The normalized rectangular components of
the equivalent series or parallel input imped-
ance or admittance of a waveguide or circuit,
which are represented on SMITH CHARTS by
two captioned families of mutually orthogonal
circular curves comprising the coordinates of
the chart.

Note 1: Coordinate components on the
three SMITH CHARTS printed in red on
translucent sheets in the back cover envelope
are:

v




Chart A

1. the equivalent series circuit impedance
coordinates: resistance component R/Z; and
inductive (or capacitive) reactance compo-
nent tjX/Z,.

2. the equivalent parallel circuit admit-
tance coordinates: c¢onductance component
G/Y, and inductive (or capacitive) susceptance
component 1jB/Y,.

Chart B

1. the equivalent parallel circuit impedance
coordinates:  parallel resistance component
R/Z, and parallel inductive (or capacitive)
reactance component £jX/Z,.

2. the equivalent series circuit admittance
coordinates: series conductance components
G/Y, and series inductive (or capacitive)
component £jB/Y,,.

Chart C

1. the equivalent series circuit impedance
or shunt circuit admittance coordinates with
negative real parts: negative resistance com-
ponent -R/Z, and negative conductance
component -G/Y,,.

Note 2: The inductive reactance and
inductive susceptance coordinate components
represent equivalent primary circuit elements
which are capable of storing magnetic field
energy only. The resistance component and
the conductance component of the coordi-
nates represent equivalent primary circuit
clements which are capable of dissipating
clectromagnetic field energy. The negative
resistance component and the negative con-
ductance component of the coordinates repre-
sent equivalent circuit elements which are
capable of releasing electromagnetic field
energy, as would be represented by the
equivalent circuit of a generator.

Impedance or Admittance Coordinates

The families of orthogonal circular curves
- representing the real and imaginary compeo-
nents of the waveguide or circuit impedance
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and/or admittance, and comprising the main
body of a SMITH CHART. The designated
values of the curves are normalized with
respect to the characteristic impedance and/or
the characteristic admittance of the waveguide,
and the entire range of possible values lies
within a circle. Enlarged portions of SMITH
CHART coordinates are sometimes used to
represent or display a portion of the total
area of the coordinate system, thereby pro-
viding improved accuracy or readability.

Note: Most commonly, SMITH CHART
impedance or admittance coordinates express
components of the equivalent series circuit
impedance or parallel circuit admittance. How-
ever, a modified form of SMITH CHART
expresses components of the equivalent paral-
lel circuit impedance or series circuit admit-
tance. A coordinate characteristic which is
common to all SMITH CHARTS is that a
complex impedance point on the impedance
coordinates and a complex admittance point
on the admittance coordinates which is dia-
metrically opposite, and at equal chart radius,
always represent equivalent circuits.

Negative Real Parts

On the SMITH CHART form in Fig. 12.5, a
designation of the sign of the normalized
resistance component of the impedance, or
the normalized conductance component of
the admittance coordinates.

Note 1: See “Coordinate Components
(Chart C).”
Note 2. A SMITH CHART whose im-

pedance or admittance coordinates are desig-
nated with negative real parts is useful in
portraying conditions along a waveguide only
when the returned power is greater than the
incident power.

Normalized Current i/VP/Z or i/VPY,

The rms current which would exist at a
specified point along a hypothetical waveguide
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having a characteristic impedance of one ohm
(or a characteristic admittance of one mho)
and transmitting one watt of power to a load.
This current is the vector sum of the incident
and reflected currents at the point.

Note 1: The actual current at any specified
power level in a waveguide is obtainable from
the normalized current by multiplying it by
the square root of the ratio of the power and
characteristic impedance (or by the square
root of the product of the power and charac-
teristic admittance).

Note 2: A plot of normalized current
and/or normalized voltage is provided as an
overlay for SMITH CHART impedance or
admittance coordinates in Fig. 4.2.

Normalized Voltage e/VPZ, or e VP/Y,

The rms voltage which would exist at a
specified point along a hypothetical waveguide
having a characteristic impedance of one ochm
(or a characteristic admittance of one mho)
and transmitting one watt of power to a load.
This voltage is the vector sum of the incident
and reflected voltages at the point.

Note 1: The actual voltage at any specified
power level in a waveguide is obtainable from
the normalized voltage by multiplying it by
the square root of the product of the power
and characteristic impedance (or by the square
root of the ratio of the power and character-
istic admittance).

Note 2: 8See Note 2 in definition for
normalized current.

Percent Off Midband Frequency n - Af

Captions for peripheral scales near the pole
regions on expanded SMITH CHARTS, which
relate specific values of the frequency devia-
tion, from the resonant or antiresonant fre-
quency, to the impedance or admittance
characteristics of open- and short-circuited

stub transmission lines » quarter wavelengths
long. Af is the deviation from the midband
frequency in percent.

Peripheral Scales

The four scales encircling the impedance or
admittance coordinates of the SMITH CHART,
individual graduations on each of which are
applicable to a straight line locus of points on
the impedance or admittance coordinates.

Note: Each graduation on each of the
three outermost of these scales is applicable
to all points on the impedance or admittance
coordinates which are radially aligned there-
with; each graduation on the innermost of
these is applicable to all points on the
coordinates which are in line with the gradu-
ations and the point of origin of the imped-
ance or admittance coordinates.

Radially Scaled Parameters

A set of guided wave parameters represented
by a corresponding number of scales whose
overall lengths equal the radius of a SMITH
CHART, and which are used io measure
the radial distance between the center and
the perimeter of the impedance or admit-
tance coordinates, at which point a specific
value of the parameter exists.

Note 1: Radially scaled parameter values
are mutually related to each other as well
as to a circular locus of normalized impedances
or admittances centered on these coordinates
(see Chap. 14, Par, 14.8).

Note 2: The use of radial scales to
represent radially scaled parameter values
avoids the need to superimpose families of
concentric circles on the impedance or admit-
tance coordinates which (if all parameters
were thus represented) would completely
obscure the coordinates.




Reflection Coefficients E or |

At a specified point in a waveguide, the
ratio of the amplitudes of the reflected and
incident voltage or current waves. If the
waveguide is lossless the magnitude of the
“Reflection Coefficients E or I”* is independent
of the reference position. If it is lossy the
magnitude will diminish as the reference
position is moved toward the generator.

Note 1: At any specified reference position
along any uniform waveguide the magnitude
of the voltage reflection coefficient is equal
to that of the current reflection coefficient.

Note 2: On a SMITH CHART the “Re-
flection Coefficients E or I’ is a radially
scaled parameter,

Reflection Coefficient P

At a specified point in a waveguide the
ratio of reflected to incident power.

Note 1: In a uniform lossless waveguide
the “Reflection Coefficient P’ is independent
of the reference position.

Note 2: When expressed in dB the “Power
Reflection Coefficient P” is equivalent to the
“Return Loss, dB.”

Note 3: On a SMITH CHART the “Re-
flection Coefficient, P” is a radially scaled
parameter.

Reflection Coefficient, X or Y Component

In a waveguide, the in-phase or quadrature-
phase rectangular component, respectively, of
the “Reflection Coefficients E or I repre-
sented on a SMITH CHART as a rectangular-
coordinate overlay. {See Chap. 8.)

Reflection Loss, dB

A nondissipative loss introduced at a dis-
continuity along a uniform waveguide, such
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as at a mismatched termination. “Reflection
Loss, dB” can be expressed as a ratio, in dB,
of the reflected to the absorbed power at the
discontinuity and/or at all other points along
a uniform waveguide toward the generator
therefrom.

Note 1: If the input impedance of a loss-
less waveguide is matched to the internal
impedance of the generator, a compensating
gain will occur at the generator end of the
waveguide., Any difference between the
“Reflection Loss, dB” at each end of a wave-
guide corresponds to the increase in attenua-
tion in a wavegnide due to reflected power
from the load.

Note 2: On a SMITH CHART ““Reflection
Loss, dB” is a radially scaled parameter.

Return Gain, dB

In a waveguide terminated in an impedance
or admittance with a negative real part, the
ratio in dB of the power in the reflected and
incident waves.

Note 1: On a SMITH CHART whose
impedance or admittance coordinates are
designated with negative real parts this is a
radially scaled parameter.

Return Loss, dB

In a waveguide, the ratio in dB of the
power in the incident and reflected waves.
The term “Return Loss, dB” is synonymous
with “Power Reflection Coefficient” when
the latter is expressed in dB.

Note: On a SMITH CHART this is a
radially scaled parameter.

SMITH CHART

A circular reflection chart composed of
two families of mutually orthogonal circular
coordinate curves representing rectangular
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components of impedance or admittance,
normalized with respect to the characteristic
impedance and/or characteristic admittance of
a waveguide. Peripheral scales completely
surrounding the coordinates include a set
of linear waveguide position and phase angle
reference scales. The SMITH CHART also
includes a set of radial scales representing
mutually related radially scaled parameters.

Note: The SMITH CHART is commonly
used for the graphical representation and
analysis of the electrical properties of wave-
guides or circuits [25].

Standing Wave Loss Coefficient {Factor)

The ratic of combined dissipation and
radiation losses in a waveguide when mis-
match-terminated and when match-terminated.

Note 1: A specific value of this coefficient
applies to the transmission losses integrated
over plus or minus one-half wavelengths from
the point of observation, as compared to the
attenuation in the same length of waveguide.
Thus, spatially repetitive variations in trans-
mission loss within each standing half wave-
length are smoothed.

Note 2: On a SMITH CHART this is a
radially scaled parameter.

Standing Wave Peak, Const. P

The ratio of the maximum amplitude of the
standing voltage or current wave along a mis-
match-terminated waveguide to the amplitude
of the corresponding wave along a match-
terminated waveguide when conducting the
same power {o the load.

Note: On a SMITH CHART this is a
radially scaled parameter.

Standing Wave Ratio (dBS)

In a waveguide, twenty times the logarithm
to the base 10 of the standing wave ratio {S).

Note: On a SMITH CHART this is a
radially scaled parameter.

Standing Wave Ratio (SWR)

The ratio of the maxirmum to the minimum
amplitudes of the voltage (or current) alonga
waveguide.

Note 1: For a given termination, and in a
given region along a waveguide the SWR is
identical for voltage or current. If the wave-
guide is lossy the SWR will diminish as the
point of observation is moved toward the
generator,

Note 2: On a SMITH CHART the SWR
is a radially scaled parameter.

Transmission Coefficient E or !

At a specified point along a waveguide the
ratio of the amplitude of the transmitted
voltage {or cumrent) wave to the amplitude
of the corresponding incident wave.

Note 1: The ‘“transmitted voltage (or
current) wave” is the complex resultant of
the incident and reflected voltage (or current)
wave at the point.

Note 2: On the SMITH CHART the
“Transmission Coefficient £ or I is a linear
scale equal in length to the diameter of the
impedance or admiftance ccoordinates and
pivoted from their origin. As so plotted, this
scale applies to voltage in relation to imped-
ance coordinates or to current in relation to
admittance coordinates.

Transmission Coefficient P

In a waveguide, the ratio of the trans
mitted to the incident power. The “Transmis
sion Coefficient P’ is equal to unity minus the
“Reflection Coefficient P.”

|




Note: On a SMITH CHART the “trans-
mission Coefficient P is a radially scaled
parametet.

Transmission Coefficient, X and Y
Components

In a waveguide, the in-phase and quadra-
ture-phase components of the “Transmission
Coefficient E or I” represented on a SMITH
CHART as a rectangular coordinate overlay.
{See Chap. 8.)

Transmission Loss Coefficient

In a waveguide, the “Standing Wave Loss
Cocfficient {Factor).”

Note: On SMITH CHARTS this is a
radially scaled parameter.

Transmission Loss, 1-dB Steps

A term used on SMITH CHARTS to
indicate the total losses due to dissipation of
power within a waveguide and/or the radiation
of power therefrom when the waveguide is
match-terminated.  “Transmission Loss™ is
expressed as a ratio in dB of the relative
powers in the forward-traveling waves at two
scparated reference points along the wave-
guide.
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Note: As above defined and used on
earlier SMITH CHARTS, the term is synony-
mous with the term “Attenuation (1 dB Maj.
Div.)” which is used on more recent SMITH
CHARTS., The change in designation was
made to avoid possible misunderstanding of
the foregoing SMITH CHART usage of the
term which in other usage frequently means
the total losses when the waveguide is mis-
match-terminated. {See ““Standing Wave Loss
Coefficient (Factor).”)

Wavelengths Toward Generator {or Toward
Load)

In a waveguide, the relative distances and
directions between any two reference points,
represented on SMITH CHARTS by the two
outermost peripheral scales expressing elec-
trical lengths in wavelengths from an arbitrarily
selected radial reference locus on the imped-
ance or admittance coordinates.

Note: On SMITH CHARTS with fixed
scales, the zero points of these scales are
arbitrarily referenced to the position of a
voltage standing wave minimum on the im-
pedance coordinates and/or a current standing
wave minimum or admittance coordinates. On
a SMITH CHART instrument, in which these
scales are rotatable with respect to the im-
pedance or admittance coordinates, the zero
point may be aligned with any other reference
position on the coordinates.






he mathematical relationships of the vari-

ous parameters involved in guided wave
propagation are basic to the construction of
the SMITH CHART, or any other chart which
portrays these relationships. Accordingly,
the applicable transmission line equations are
included herein for those who may desire this
background information without the necessity
of referring to other sources. Also, these
relationships serve to provide more exact
solutions to specific problems in cases where
graphical solutions cannot provide the desired
accuracy or when, for example, a computer
is available,

In these formulas the sending-end imped-
ance Z_ is the input impedance of a transmis-
sion line looking toward the load. Except
for its mismatch effect on the transfer of
power from generator to line (and/or to load),
the value of Z_ is completely independent of
the impedance looking toward the generator
from this position, and is thus the impedance
which would be seen if the line (or other
.connections to the generator) were cut off at
this point. Z_ is thus the impedance at any

H

specified point along the line.

APPENDIX A

Transmission
Line
Formulas

There are an infinite number of input
or sending-end impedances along any finite
length of transmission line, and the position
of the specified sending-end impedance with
respect to the receiving-end or load impedance
Z_ must be known in order to evaluate it.
The receiving-end impedance, like the sending-
end impedance, can be referenced to any
position along the line provided that it is on
the load side of the specified input imped-
ance position. The length ! is the distance
between Z_ and Z_, and must be expressed
in the same units as the wavelength A, for
example, meters.

E, and I, are the voltage and current,
respectively, at the position corresponding to
Z, and represent root-mean-square values of
the complex sinusoid at this point. Similarly,
E and I are the voltage and current,
respectively, at the position assigned to Z,.
P is the propagation constant and Z; is the
characteristic impedance, as defined in Chap.
2.

A computer program for plotting impedance
or admittance data on a SMITH CHART has
been written [146,150] in FORTRAN IV to
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194 ELECTRONIC APPLICATIONS OF THE SMITH CHART

which the reader who may be interested is
referred. An example is given in the refer-
enced article.

The formulas given herein are extracted,
with some editing from J. A. Flemming [2]
and other sources.

1.  General Relationships for Any Finite-
length Transmission Line

E, = E, coshPl + I Z, sinhPI (A-1)
E A-2
I, = I coshPl + — sinhPi ( )
ZO
and
E, E, coshPl + [,Z, sinhP!
Z, = — = : (A-3)
I I_coshPl + {Er/ZO} sinh Pl
Zy cosh Pl + (Z42/Z) sinhPI
- (A-4)

(ZO/Zr) coshPl + sinhPl

Two special cases of finite line lengths are
presented by lines which are terminated in {(a)
open circuits and {b) short circuits, viz.,

{a)} Open-circuited lines

If the receiving end of any uniform trans-
mission line is open circuited, I = 0, and

E, - E, coshP! (A-3)
E .
I, = — sinhPi (A-6)
ZD
and
ES
Z, = — = Zg cothPi (A-7)
T

{b} Short-circuited lines

1

If the receiving end of any uniform trans-
mission line is short-circuited, E, -. 0, and

=
|

= 1,Z, sinh P} (A-8)

—
I

I coshPl (A-9)

E

8

Z, = — = Z, tanhPI
I

5

(A-10)

2. Relationships for any Finite-length Loss-
less Transmission Line

The following equations for lossless lines
are obtained from Eqs. (A-1) through (A-10)
by setting the attenuation constant « equal to
zero, in which case P - a + jB = +jB (see
Eq. (2-7)), and by emploving the following
relationships between hyperbolic and circular
frigonometric functions:

i

sinhj@ = jsinf

coshjB = cosf

and
tanhj8 = jtang
{a) Lines terminated in an impedance

If the receiving end of any uniform lossless
transmission line is terminated in an imped-
ance Z,

E, = E, cosBl + jZyI, sinpl (A-11)

B
I, = I cosfl + jZ

r

sin g (A1)

$
0




and
E, E_cosf3l 1+ jZyl, sinpl

z, - - - Bl TSR
I, I cosBl + J(E,/Zy) sinfl

or

Z, + jbg tanf3i

Z, = ZLy——— (A-14)
Zg + jZ, tanfl

Rationalizing Eq. (A-14)

=~

|

(Z,/Zy) (1 + tan® BD

o 14(22/2,® tan® Bl

N

‘{1 _ Zr2/zﬂ2) tanzﬁf (A*]S)

+J

1+ 22/2,% tan® Bl

By substituting real values for Z /Z; in Eq.
(A-15), the loci of the normalized input
impedance components along a transmission
line, as represented graphically along a circle
of constant standing wave ratio on a SMITH
CHART, can readily be obtained.

{b) Open-circuited lines

[f the receiving end of any uniform lossless
transmission line is open circuited, I, = 0, and

Er
sec 31
E!"
I, - j—singi (A-17)
Zy
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E‘;

Z, = — = -jZy cotBl (A-18)
&

or
lrS

Y, = o - j¥q tan Bl (A-19)
5

where Y and Y, are, respectively, the sending-
end admittance and the characteristic admit-
tance of the line.

From Eq. (A-16) it can be seen that in
lossless open-circuited lines the receiving-cnd
voltage E_ varies befween the sending-end
voltage E_ and infinity as the length of line is
varied. The receiving-end voltage is equal to
the sending-end voltage when [is1/2A, 3/2A,
etc.,and is infinite when [ is 1/4x,3/4x,5/4x,
etc.

(c) Short-circuited lines

If the receiving end of any uniform lossless
transmission line is short-circuited, E, - 0, and

E, ~ jZyl, singl (A-20)
I, = I cospl (A-21)
and
ES
Z, - — - jZ, tanfI (A-22)
IS
or
IS
Y, = i = —jY5 cot8i (A-23)

L]

Since the tangent and the cotangent of a
given angle always have the same sign, it is
possible to change the inpuf impedance of a



196 ELECTRONIC APPLICATIONS OF THE SMITH CHART

line which is capacitive when open circuited at
its receiving end into an inductance by short-
circuiting its receiving end. It is also possible

to change an inductive open-circuited line into

a capacitive line by short-circuiting its receiving
end.




BILINEAR TRANSFORMATION

As will be shown herein, a conformal trans-
formation can be applied to the curves on
the rectangular transmission line chart in Fig.
1.2 in order to obtain the more convenient
circular form shown in Fig. 1.3. When the
latter figure is rotated 90° counterclockwise
from the orientation shown {sce Sec. 1.4), the
transformation whose general form is
w aZ + b
cZ + d

(B-1)

will be found to give the desired result.
By assigning the proper values to the con-
stants a, b, ¢, and d, the axis of X/Z, may be
transformed into a circle of any convenient
radius, and the entire chart will then lie within
this circle. Each of the circles corresponding
to a particular value of D will become a
diameter of the new boundary circle and all
of the other circles or straight lines in the
rectangular chart will become circles or arcs
of circles in the circular chart.

In order to perform such a transformation
let each point on the rectangular chart be
. denoted by a complex number

W= u+ ju

APPENDIX B

Coordinate
Transformation

Similarly let each point on the circular chart
be denoted by

Z =x+Jy

Then the following conditions may be set up:
The u axis is to be transformed into a circle
of radius A whose center lies on the y axis a
distance A above the origin. At the same time,
the point (z = 0, v = 1) is to be transformed
into the center of this circle. These conditions
fix the transformation of the following points:
when

w =0+ j0 =0+ jO
w=90+jlL0 =0+ jA (B-2)
W= +m + jO Z =0+ j24
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Substituting in Eq. (B-1), the transformation
becomes

w = % (B-3)
Z - j24

This may also be written

j2Aw
w -+ J

z = (B-4)

Either one of these equations makes it pos
sible 10 determine the location of the point
in one chart which corresponds to any given
point in the other. However, it would be
more convenient to have the equations of the
curves in the circular chart which correspond
to the circles and the coordinate system in
the rectangular chart. These equations will
therefore be derived.

a. The Lines v = a Constant

The lines v = a constant comprise those
straight lines parallel to the u axis in the
original chart. To find what these lines
become in the circular chart it wiil be
necessary to substitute for w and Z in Eq.
(B-3) the complex expression (u + iv} and
(x + iy). Then the reals and imaginaries may
be separated to give

ux — vy — v + 2Av
+jluy + x +vx - 24w = 0

To satisfy this equation, the real and imagi-
nary parts must be separately zero. Thus,

xu—(y -2A)ev =y

(B-5)
(y - 24 u + av = —-x

Eliminating u,

v
(1 +w

2 42 - 2Ay(l + 2W) _
{1 + v

4 A%

When v is constant, this is the equation of a
circle in the Z plane. By adding the quantity
(1 +20242/(1 + v? to each side, the fol
lowing more useful form is obtained:

2 (1 + 2v) A2 A%
T+ Yy - =
1+ v (1 + v

(B-6)

From Eq. (B-6} it is evident that the radius
of the circle is A/(1 + v) while its center is
located on the y axis at a distance
(1 + 2v)/(1 + e)]A from the origin. Since
v = R/Z,, the circles corresponding to various
values of R/Z, can now be drawn. It will be
noticed that the circle for R/Z; = 0 has
radius A and center at (x = 0,y = A). For
higher values of R/Z,, the radius of the circle
becomes smalier and its center rises until for
R/Zy = = the circle is of zero radius and its
centerisat (x = 0, y = 24).

b. The Lines u = a Constant

The ordinates of the rectangular coordinate
systern correspond to various constant values
of u. Consequently, the equation of the
curves to which they are transformed can
be obtained by eliminating v from Eqgs. {B-5).
When this is done, there results

24 y—2a2 - 24, (B-7)
!

For each value of u this represents a circle
of radius 2A/w, whose center is at
(x = A/u, y = 24), Thus these circles are all
tangent to the y axis and their centers are all
on the line y = 24 which is parallel to the
x axis and tangent to the circle for v = 0.
Since u = X/Z, the circle for each value of
X/Z, may readily be drawn, its radius and
center now being determined.




¢. The Circles of Constant
Electrical Line Angle

Each of the circles, on the rectangular
chart, corresponding to a particular value
of D will transform into a diameter of the
circle whose centerisat(x = 0, y = A). These
straight lines may be represented by

y = mx+ A (B-8)

where m is the slope, Substituting Eq. (B-8)
in Eqs. (B-5):

xu — (nx - Alv = mx + A
(mx ~ Alu + xv = -x

or

e —mo - m = Al - v)
xlmy + v+ 1) = Au

Dividing,

(u —mv - mu (muy + v+ D1l - w

or

w-m?2 +v2 =1+ (B-9)

which, when m is a constant, represents a
circle in the rectangular chart. The radius
i8 V1 + m? and the center is on the © axis a
distance m from the origin. When u =0,
this equation gives v = *1, which shows that
all the circles pass through the required point
(u=00v=+1.

Now the slope is the tangent of the angle
with the horizontal or is the cot¢ where ¢ is
the angle between the y axis and the diameter
rin question. Thus Eq. (B-9) becomes

(u - cote)® + v2 = 1 + cot?e
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This equation is identical to the equation for
the lines of force about two equal and opposite
parallel line changes. Consequently ¢ is pro-
portional to the parameter D and thus is
directly proportional to the electrical angle
of the line.

d. The Circles of Constant Standing
Wave Ratio

Since the transformation is conformal, and
since the cmrcles of constant standing wave
ratio r are orthogonal to those of constant D,
these two systems must be orthogonal in the
circular chart. But the circles of constant D
turned out to be straight lines, all passing
through one point. Hence the circles of con-
stant r must transform into circles having a
common center at the intersection of the set
of straight lines. Also, the value of r may be
determined by determining the scale of R/Z;
which is to be plotted along the y axis. This
is obtained directly from Eq. (B-4) by putting
x = Qand u = 0, Then

2 Av

v+ 1

¥ =

or, putting v = R/Z,

_ ZA(R/ZD}
(R/ZO) +1

Thus for
—& =1 y = A
ZO
r—R— =0 y =0
50
—R- = o0 Y = 2A
Z
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and so on.  Also, the point X/Z, =0,
R/Zy = 1/2 and becomes y = 2/3 and the
point X/Z, = 0, R/Z; = 2becomes y = 4/3.
Hence, these two points lic on a circle of
radius 1/3 on the circular chart. On the

rectangular chart they were also on the same
circle, that for r = 0.5. Thus having deter-
mined the scale for R/Z in the circular chart,
the radii of the circles of constant r are auto-
matically determined.




Symbols

he following is a list of symbols used throughout this book. Where more than a single
definition is given for the same symbol the proper choice will be evident from its usage in the

text.

square value of the alternating sinusoid.

Susceptance, mhos

Susceptance of an equivalent
parallel circuit element

Susceptance of an equivalent
series circuit element

Capacitive susceptance of an
equivalent parallel circuit ele-
ment

Inductive susceptance of an
equivalent parallel circuit ele-
ment

Capacitive susceptance of an
equivalent series circuit ele-
ment

Inductive susceptance of an
equivalent series circuit ele-
mernt

Normalized susceptance com-
penent of admittance

Capacitance, farads

Distance from a voltage maxi-
mum or minimum

Decibel = log; (P /P,)

dBS

e

€

e/(PZY?

e/(P/Y)Y?

Voltage and current symbols, except where specifically stated, indicate the root mean

Standing wave ratio in decibels
= 20 log;o 8

Voltage (rms sinusoid) in volts

Voltage at a point along a
standing wave

Voltage at receiving end of a
waveguide
Voltage at sending end of a
waveguide
Voltage at a standing wave
maximum
Voltage at a standing wave

minimum

Potential at any distance x
from the sending end of a
waveguide at time ¢

Base of natural logarithms
Base of natural logarithms

Normalized waveguide voltage
{rms)
Normalized waveguide voltage
(rms)

Frequency, hertz
201
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max

Er

G/Y,

Midband frequency of a reso-
nant (or antiresonant) circuit
or waveguide

Conductance, mhos
Conductance at a voltage stand-
ing wave minimum
Conductance of a resonant
waveguide

Conductance at a voltage stand-

ing wave maximum

Conductance of an antireso-
nant waveguide

Conductance of an equivalent
parallel circuit element

Conductance of an equivalent
series circuit element

Equivalent circuit conductance
of an active device

Equivalent circuit conductance
of an active device at resistance
cutoff frequency

Equivalent circuit conductance
of an active device at zero
operating frequency

Equivalent circuit conductance
of an active device at its self-
resonant frequency
Normalized conductance com-
ponent of admittance

Cyclesfsecond

Current (rms sinusoid), am-
peres

Current at receiving end of a
waveguide

Current at sending end of a
waveguide

Current at a standing wave
maximum

Current at a standing wave
minimum

ELECTRONIC APPLICATIONS OF THE SMITH CHART

I,

NPz
i/(PY)172

L
L

lort

'_:D"U

W
by

Current at a point along a
waveguide

Current at a point one-guarter
wavelength removed from the
voltage along a waveguide

Current at any distance x from
the sending end of a waveguide
at time !

Amplitude of incident traveling
wave (voltage or current)
Normalized waveguide current
(rms)

Normalized waveguide current
(rms)

Inductance, henries

Electrical length of a waveguide
matching stub of characteristic
impedance Z,,

Electrical length of a waveguide
matching stub of characteristic
impedance Z

Electrical length of an individ-
ual waveguide slug

Total electrical length of a
multiple waveguide slug trans-
former

Electrical length of a section
of waveguide

Number of integral quarter
wavelengths in a resonant (or
antiresonant) waveguide

Complex propagation constant
of a waveguide o + j8

Power, watts
Relative power, watts
Reference power, watts

In a pair of voltage (or current)
sampling probes along a wave-
guide, the probe nearest the
generator

1




In a pair of voltage (or current)
sampling probes along a wave-
guide, the probe nearest the
load

Ratio of midband frequency
and half-power bandwidth

Resistance, ohms

Resultant amplitude of inci-
dent and reflected traveling
waves (voltage or current)

Resistive component of load
impedance

Resistance at a voltage standing
wave maximum

Resistance of an antiresonant
waveguide

Resistance at a voltage standing
wave minimum

Resistance of a resonant wave-
guide

Resistive component of char-
acteristic impedance

Resistance of an equivalent
paralle] circuit element

Resistive component of re-
ceiving-end impedance

Resistance of an equivalent
series circuit element

Normalized resistance compo-
nent of impedance

Amplitude of reflected travel-
ing wave (voltage or current)

Standing wave ratio when less
than unity

Series resistance of small-signal
aquivalent circuit of an active
device

Electrical spacing between two
voltage (or current) sampling
probes along a waveguide

SWR

SWR

max
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Standing wave ratio (voltage
or current)

Standing wave ratio (voltage
or current)

Maximum value of the standing
wave ratio

Time, seconds
Voltage (rms of sinusoid)

DC bias voltage on an active
device

Relative voltage

Reference voltage

Maximum voltage along a wave-
guide

Minimum voltage along a wave-
guide

Voltage standing wave ratio

Phase velocity of propagation
in a uniform waveguide,
meters/second

Power, watis
Reactance, ohms

In-phase component of angle
of power factor

In-phase component of com-
plex voltage (or current) trans-
mission or reflection coeffi-
cient

Input reactance of waveguide
stub of characteristic imped-
ance 7,

Input reactance of waveguide
stub of characteristic imped-
ance Z

Capacitive reactance, ohms
Inductive reactance, chms

Reactive component of load
impedance

Reactive component of char-
acteristic impedance



Reactive component of an
equivalent parallel circuit
Inductive reactance of an
equivalent parallel circuit ele-
ment

Capacitive reactance of an
equivalent parallel circuit ele-
ment

Reactive component of receiv-
ing-end impedance

Reactive component of send-
ing-end impedance

Reactance of an equivalent
series circuit element

Inductive reactance of an
equivalent series circuit ele
ment

Capacitive reactance of an
equivalent series circuit ele-
ment

Normalized reactance compo-
nent of impedance

Distance along a waveguide
from the sending end

Admittance, mhos

Quadrature-phase component
of complex voltage (or current)
transmission or reflection coef-
ficient

Quadrature-phase component
of angle of power factor

Load admittance of waveguide

Maximum admittance along a
waveguide

Minimum admittance along a
waveguide

Admittance of an equivalent
parallel circoit

Admittance of an equivalent
series circuit
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Yg

Y/Yq

Z

zll

o8B

zZ/Z,

Ch_aracteristic admittance of a
uniform waveguide, mhos

Normalized admittance of a
uniform waveguide

Impedance, ohms

Image impedance at the input
port of a two-port symmetrical
passive network

Image impedance at the output
port of a two-port symmetrical
passive network

Load impedance of waveguide

Maximum impedance along a
waveguide

Minimum impedance along a
waveguide

Characteristic impedance of a
uniform waveguide, ohms

Input impedance of a two-port
symmetrical passive network
with output port open-circuit-
ed

Characteristic impedance of a
waveguide stub

Impedance of an equivalent
parallel circuit

Receiving-end impedance of a
waveguide

Sending-end impedance of a
wavegtide

Input impedance of a two-port
symmetrical passive network
with output port short-circuit-
ed

Characteristic impedance of a
transforming section of wave-
guide (slug)

Normalized impedance of a
uniform waveguide




PE

Pr

Px

Attenuation constant of a
waveguide, nepers/unit length

Angle of voltage (or current)
reflection coefficient

Phase constant of a waveguide,
radians/unit length

Angle of voltage (or current)
transmission coefficient
Dielectric constant, relative to
air

Wavelength, units of electrical
length

Phase of voltage (or current) at
a point along a standing wave
relative to that at nearest mini-
mum

Voltage insertion phase
Current insertion phase

Voltage (or current) reflection
coefficient

Voltage reflection coefficient

Voltage reflection coefficient
vector

In-phase component of voltage

Py
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(or current) reflection coeffi-
cient

Quadrature-phase component
of voltage (or current) reflec-
tion coefficient

Voltage (or current) transmis-
sion coefficient

Current transmission coeffi-
cient

Voltage transmission coetfi-
cient

In-phase component of voltage
(or current) transmission coef-
ficient

Quadrature-phase component
of voltage (or current) trans-
mission coefficient

Image transfer constant in a
two-port passive symmetrical
network

Angle of the impedance vector
(angle of the power factor)

27 times the frequency |
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Admittance:
characteristic {see Characteristic ad-
mittance)
final input, 18, 19
input, of a waveguide, 18, 19
matching of, 97-99
(See also Impedance, and admittance)
Admittance matching {see Matching, im-
pedance and admittance)
Angle of reflection coefficient:
description of, 21, 25
scale of, 21
(See also SMITH CHART, perpheral
scales of)
Astrolabe (see Charts, in navigation)
Attenuation:
scale of, 34, 92, 186
of traveling waves, 3, 4, 34, 35
(See also Standing wave loss factor;
Transmission loss)
Attenuation constant, description of, 14,
15
(See also Phase constant; Propagation
constant)

Balanced L-type matching circuits, 128
Bandwidth:
representation on SMITH CHART, 77,
78, 188
of a waveguide stub, 81, 82
(See also Expanded SMITH CHART,
pole regions of)
Building-out section (see Transformers,
stub}

Carter, P.S,, Ref. 9
Carter chart:
coordinates of, 63, 65-67
coordinates with transmission and re-
flection coefficient scales, 68
Characteristic admittance:
relation to characteristic impedance, 19
use as nommalizing constant, 14, 19
Characterstic impedance:
definition of, 3, 12

Characteristic impedance (cont'd):
relation to primary circuit elements, 12
of transmission lines, 12, 13

nomographs for, 13
of uniconductor waveguides, 13, 14
use as normalizing constant, 19
of a waveguide, 1, 3, 13
(See also Initial sending-end impedance;
Surge impedance)

Charts:

eatly transmission line, xiil, xv-xvii,
82, 83

for guided waves, xiii, xv-xviii

in navigation, xiii, xiv

(See also Carter chart; Expanded
SMITH CHART; SMITH CHART)

Circuit elements, primary, 11

Coefficient of reflection (see Reflection

coefficient of)
Conformal transformation of coozdinates,
xv, 197-200

Coordinates of SMITH CHART, con-
struction of (see SMITH CHART,
construction of coordinates)

Current reflection coefficient (see Re-

flection, coefficient of)

Curient transmission coefficient (see

Transmission, coefficient of)

Currentvoltage overay for SMITH

CHART, 33, 3841
(See also Nommalized current; Nor
malized voltage)

Electrical length:
discussion of, 24
relation to physical length, 24, 25
scale of, 23, 24
(See also SMITH CHART, peripheral
scales of; Wavelength scales on
SMITH CHART)
Equivalent circuit representations:
parallel impedance and series admit-
tance, 60, 61, 63, 65
alternate SMITH CHART coordi-
nates for, 62

Index

Equivalent circuit representations
{cont’'d):
series impedance and parallel admit-
tance, 58, 61
vector relationships for, 58, 59
Expanded SMITH CHART:
central regions of, 71-75
by coordinate distortion, 71, 73, 82
83
by coordinate inversion, 71-73, 82,
84-86
pole rgions of, 71-73, 76-78
for bandwidth of stub lines, 82
for locus of impedance, 79-81
for Q of stub lines, 81, 82

Flemming, J.A., xv, 194
(See also Telephone equation)

Glossary of SMITH CHART tenns, 185-
191
Graphical representations (see Charts)

Hyperbalic functions, tables of, xi#

[mpedance:
and admittance:
alternative representations of, 60-63
seties to parallel conversion, 62-64
series to polar conversion, 63, 65,
66
coordinates, 187
characteristic (see Characteristic im-
pedance)
final sending-end, 16
initial sending-end, 3
input of 2 waveguide, 16-18
conversion to admittance, 19, 20
formula for, 17
nonnalization of, 19
properties of, 17, 18
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Impedance matching (see Matching, im-
pedance and admittance)
Initial sending-end impedance, 3
(See glso Surge impedance)
Inverted SMITH CHART (see Expanded
SMITH CHART, by coordinate
inversion}

Kennelly, A.E., xiii

L-type matching circuits:

analysis of, 116-118

capabilities of, 115-117

circuit arrangements of, 115-116

forbidden areas on SMITH CHART,
116, 117, 120-127

losses in, 115, 116

overlays for SMITH CHART, 118,
120-127

examples of use, 118-119

selection of, 116,117

transformable impedances, 115, 116

{(See also Balanced L-type matching
circuits; T-type matching circuits)

Matching, impedance and admittance,

97-128

(See agiso Balanced L-type matching
cireuits; L-type matching circuits;
T-type matching circuits; Trans-
formers)

Matching circuits (see Balanced L-type
matching circuits; L-type match-
ing circuits; T-type matching cir
cuits)

Matching stubs (see Transfommers, stub)

MIT Radiation Laboratory, xv

Modes (see Wavepguides, modes of propa-
gation in)

Negative resistance:
definition of, 137, 138
power flow in waveguide, 142
properties of, 137, 138
representation on SMITH CHART, 138,
139, 187
advantages of, 141
applications for, 139
effect on conventional scales, 138,
139
Negative SMITH CHART:
examples of use: reflection amplifier
design, 150-156
equivalent circuit for, 150-152
evaluation of circuit constants, 155

ELECTRONIC APPLICATIONS OF THE SMITH CHART

Negative SMITH CHART (cont 'd):
representation of operating param-
eters, 152-155
radial scales for: power reflection coef-
ficient, 145
reflection coefficient, 141, 142, 144,
145
return gain, 145, 189
standing wave ratio, 14%
dB, 149
transmission loss, 150
transmission loss coefficient, 150
reflection coefficient of: angle of, 141,

142, 147
magnitude of, 141, 142, 144, 145,
147
transmission coefficient of: angle of,
142, 144, 148

discussion of, 142, 144
magnitude of, 142, 144, 148
Negative SMITH CHART coordinates
and scales, 143, 145, 146
Normalization:
of admittances, 18, 19
of impedances, xv, 16, 17
axample of, 19
Normalized current, definition of, 187,
188
(See also Currentvoltage overlay for
SMITH CHART}
Normalized voltage, definition of, 188
(See also Voltage-curtent overlay for
SMITH CHART)
Numerical aligriment chart, 166-168

Overdays for SMITH CHART:
amplifude of E or I, relative to mini-
mum, 53
angle of E or [, relative to minimum, 51
L-type circuit design, 120-127
matching stub design, 104, 105
negagive impedance coordinates, 143
nomnalized E or 1, 39
parallel impedance coordinates, 62
polar impedance coordinates, 67
probe ratio loci, 131-134
reflection coefficient, 27
for negative SMITH CHART, 147
transmission coefficient, 49
for negative SMITH CHART, 148
of reflection coefficient, rectangular
coordinate, 90

Parzlle]l impedance SMITH CHART, 60-
64
coordinates, 62
and scales for, 64
Peripheral scales of the SMITH CHART
{see SMITH CHART, peripheral
scales of}

Phase:
absolute, 44
example of, 44-46
of incident wave, 44, 45
insertion, voltage and current, example
of, 50-55
of reflected wave, 4446
relative lag and lead, 44, 45
of resultant wave, 44-46
of standing wave, 46, 50-52
unit of, 44
Phase angle:
of curtent reflection coefficient, 43 44,
46, 185, 186
of power factor, 39, 40, 43
of transmission coefficient, 47-50, 186
of voltage reflection coefficient, 43,
44, 46, 185, 186
Phase constant, 14, 15
{See also Attenunation constant; Propa
gation constant)
Phase conventions, 44-46
Polar impedance chart (see Carter chart)
Polar impedance vectors, chart for com-
bining, 66, 69-70
Pole region charts (see Expanded SMITH
CHART, pole regions of}
Power factor:
angle of, 3943
magnitude of, 43
Power reflection coefficient:
definition of, 26, 189
representation on SMITH CHART, 35
scale of, 26
(See olso Negative SMITH CHART,
radial scales for)
Power transmission coefficient:
definition of, 46, 47
scales for, 47
Prmary circuit elements, 11
Probe measurements of current or volt-
age (see Standing waves, probe
measerements of)
Propagation constant, 14, i35

Q) of resonrant and antiresonant lines (see
Expanded SMITH CHART, pole
regions of, for Q of stub lines)

Radial scales of the SMITH CHART (see
Negative SMITH CHART, radial
scales for; SMITH CHART, radial
scales of)

Rectangular chart, history and descrip-
tion of, xiii, xv, xvi, xviii, XX

Rectangular representations of reflection
and transmission coefficients, 88,
89

{See also Reflection, coefficient of,
representations of; Transmission,
coefficient of, representation of}




Reflection:
coefficient of: angle of, 4, 25, 27, 46,

48, 185, 186

conversion to impedance, 91

magnitude of, 4, 26, 27, 48, 189

for negative SMITH CHART (see
Negative SMITH CHART, reflec-
tion coefficient of)

overlay for SMITH CHART, 27, 90

relation to transmission coefficient,
47, 48

representatons of, 25-27

scale of, 25, 26, 88, 89, 95

voltage or cument, definition of, 4,

26, 189
X ot Y component of: representation
of, 88-91, 189
plot of components, example of,
a4, 95

(See wiso Phase angle, of voltage
reflection coefficient; Power re-
flection coefficient)

of traveling waves, 4, §
Reflection gain, 38
Reflection loss:
definition and evaluation of, 37, 38,
189
scale for, 34
Reflection-transmission coefficients:
composite X-Y representation of, 89-
91
conversion to impedances, 91
Resonance and antiresonance:
definition of, 76
in waveguide stubs, 71, 76-79
dependence on electrical lengih of,
72, 76
dependence on loss in, 76-79
equivalent circuits for, 76
Retum gain, 143, 189
(See also Retum loss)
Retum loss:
equivalence with power reflection coef-
ficient, 26, 189
evaluation of, 38
scale for, 34
(See also Return gain)

Scales for SMITH CHART (see SMITH
CHART, pedpheral scales of,
SMITH CHART, radial scales of}

Slide screw tuner, 98

SMITH CHART:

conformal mapping of, 139-141

bilinear transformation of coordi-

nates, 139-141

construction of coordinates, 21, 22

coordinates of, 15, 16, 186, 187

coordinates with polar and rectangular
transmission and reflection cosf-
ficient scales, 93-94

SMITH CHART (conf'd):
coordinates with transmission and re-
flection coefficient scales, 91, 92,
94, 95
description of, 1, 189, 190
history of, xii, xv-xx
other names for, Xviii
peripheral scales of, 21, 23-25, 33, 188
(See also Angle of reflection coeffi-
cient; Transmission, coefficient
of, angle of; Wavelength scales on
SMITH CHART)
radial scales of: loss scales, 33, 34, 92,
94, 95, 186, 189-191
reflection scales, 25, 26, 92, 94, 95,
189
translucent overlay, Chart “A" (see
envelope inside back cover)
uses of: basic, 157
solution of vector triangles, 166-168
special: data plotting, 159-161
circuit design, 163-166
network applications, 158, 159
numercal calculations with, 166-
168
Rieke diagrams, 161
scatter plots, 161, 163
specific, 157-158
SMITH CHART insituments:
blackboard charts, 183, 184
caleulator, 169-171
improved version, 171-173
with spiral cursor, 173-174
computer-plotter, 182-183
impedance transfer ring, 174, 175
laminated charts, 184
large paper charts, 182, 183
Mega-Charts (8% x 11 paper charts),
184
Mega-Plotier, 176-178
Mega-Rule, 179-182
plotting board, 175, 176
types of, 169
Standing waves:
loci of voltage (or current) ratios, 129,
131-134
constmction of overlays for SMITH
CHART, 135, 136
overlays for impedance evaluation,
129-136
peak value of, 190
position of minima, 29, 30
relation to reflection coefficient, 30
probe measurements of, 129, 130
impedance evaluation by, 129-136
probe separation, 129, 130
relative amplitude along, 52, 53
relative phase along, 50-52
shape of, 5-9, 28-30, 48, 94, 95, 149
construction of spacial shape of, 7-
9
{See afso Phase, of standing waves)

INDEX 221
Standing wave loss factor {coeffieient):
discussion of, 36, 37, 190
scale for, 34
(See also Transmission loss)
Standing wave ratio:
in decibels, 26, 30, 31, 190
effect of attenuation on, 30
effect of generator impedance on, 17,
18
maximum to minimum, 26, 27, 190
minimwm to maximum, 73, 82, 83
with negative resistance terminations,
142, 144, 149
relation to normalized resistance, 30
relation to traveling waves, 5-7
representation on SMITH CHART, 28
scale of, 26
Stub lines {see Resonance and anti-
resonance, in waveguide stubs}
Sarge impedance, 3
(See also Characteristic impedance;
Iitial sending-end impedance)

T-type matching circuits, 119, 128
Telephone equation, xv, 17, 194
Transformers:
slug: definition of, 97
dual, 110114
analysis with SMITH CHART, 110-
112
matchable boundary, 112, 113
overall length of, 113-114
single, 97, 107, 109, 110
operation of, 107, 109, 110
quarter-wave, 107, 109, 110
stub: definition of, 97
dual, 102, 103, 106, 107
forbidden arcas on SMITH CHART,
103, 106
matching capability, 102, 103, 106,
107
single, 97-102
design of, 99, 100
design ovetlays for SMITH CHART,
102, 104, 105
length versus impedance, 100-102
matching capahility, 97, 98
mismaich, length, and location of,
928-100
operation of, 97-99
Transmisston, coefficient of: angle of,
46.50, 87-89, 91, 92, 186
magnitude of, 46-50, 88-94, 190
for negative SMITH CHART (see
Negative SMITH CHART, trans-
mission coefficients of)
overlay for SMITH CHART, 47-49
39, 90
power, definition of, 46, 47, 190, 191
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Transmission, coefficient of (cont’'d):
relation to reflection coefficient, 47,
48
representation of, 4749, 87-91
scale of, 47. 92
voltage or current, definition of, 46,
47, 190
X or Y component, 88-90, 191
application of, 94, 95
(See also Phase angle, of transmission
coefficient; Power transmission
coefficient)
Transmission loss:
in coaxial and open wize lines, 34
coefficient, 191
in cylindrical waveguides, 34
definition of, 34, 191
determination of, 41, 42
ratio in decibels, 35
scale for, 34, 95
scale direction on SMITH CHART, 35
types of, 34

ELECTRONIC APPLICATIONS OF THE SMITH CHART

Transmission loss, types of (cont'd).
conductor loss, 3, 34
dielectric loss, 3, 34
radiation loss, 34
units of, 34, 35
(See also Attenuation; Negative SMITH
CHART, radial scales for; Stand-
ing wave loss factor)
Transmission loss coefficient {see Stand-
ing wave loss factor)
Transmission-reflection coefficients (see
Reflection-transmission coeffici-
ents)
Traveling waves:
discussion of, 3-5, 3§
graphical representation of, 7
relation to standing waves, 5-7

Voltage-current  overday for SMITH
CHART, 33, 3842

Voltage reflection coefficient {see Re-
flection, coefficient of)

Voltage transmission coefficient (see
Transmission, coefficient of)

'Waveguide admittance (see Admitiance)
Waveguide reflection coefficient (see Re-
flection, coefficient of)
Wavepuide transmission coefficient (see
Transmission, coefficient of)
Waveguide impedance (see Impedance)
Waveguides:
electrical constants of, 11-15
losses in, 3, 33-38
modes of propagation in, 2, 3, 18
reflection in, 4, 5, 25, 26
types of, 1
Wavelength scales on SMITH CHART,
21, 24, 25, 191
(See also Electrical length)
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