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PREFACE

Ix many branches of science, in engineering practice,
in technology, in industry and in military science,
Nomography is a recognised means of carrying out
graphical calculations. The ballistic constant in
gunnery, flame temperature in the research of coal-gas
combustion, the angle of twist in a thread of given
thickness with a given number of turns per inch,
the conversion of counts in the textile industry, can
all be calculated by means of nomograms. Nomo-
graphic charts are simple and certain in use, so that
calculations formerly entrusted to skilled and respon-
sible computers can now be safely left to the care of &
comparatively unskilled subordinate. Itis the object
of this First Course to offer a clear and elementary
account of the construction and use of such charts.
The method of treatment chosen is based on
experience gained i the making of nomograms for
various technological departments in the University
of Leeds, and in other ways. It is a treatment that
should be found useful by the reader who desires to
become acquainted both with the theory of nomo-
graphy and with its practical use. Chapter III.
begins the nomography proper, but the reader is
advised to study Chapters I. and II. first, in order
to see how the nomograms in Chapter III. can be
constructed. Special attention is directed to §§ 49-50
in Ch. IV,, and to Chapter VIII. Answers have been
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vi PREFACE

purposely omitted, even where the examples lead to
numerical results.

The sincere thanks of the author are due to Prof.
W. P. Milne, M.A., D.Sc., Mr. R. C. Fawdry, M.A.,
and Mr. A. W. Siddons, M.A., for their kind help in
reading the manuscript and making many suggestions,
most of which have been adopted. Thanks are also
due to Mr. R. M. Milne, M.A., for suggesting an
important example in gunnery, and to the Kditor of
the Mathematical Gazette for permission to make
use of the subject matter and diagrams of an article
by the author published in that journal. KExten- -
sive use has been made of d’Ocagne’s Traitd de
Nomographie, and the author’s great indebtedness to
this admirable work is gladly acknowledged.

Special thanks are due to Mr. A. J. V. Umanski,
M.Sc., for his kindness in reading the proofs and
detecting several errors. The author will be very
grateful if users of the book will inform him of any
mistakes they may find, or of any suggestions they
can offer for increasing the usefulness of the book.

Leeps, January, 1920. S. B.

PREFACE TO SECOND EDITION

In this edition a chapter has been added on the use
of determinants in the construction of nomograms.
Several corrections and small alterations have been
made, mainly at the instance of a number of kind
friends, who have taken the trouble to suggest them
to me, and whom I thank most sincerely. S. B.

LeEDS, March, 1925.
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HISTORICAL SKETCH

WrEN Descartes invented Coordinate Geometry, he
put at the disposal of mathematicians a powerful
weapon that has led to phenomenal advances in all
branches of mathematical science. For the purpose
of practical use in calculations by means of graphical
representation on a plane, the number of variables
that can be used is obviously restricted to two. This
limitation was removed by Buache (1752), who
introduced the method of contours—now incorporated
in all atlases and surveys. By means of contours it
is possible to deal with three quantities at once, whilst
they are all represented on one plane, as e.g. in
indicating the variation in the height of land or
the depth of the sea. This sufficed for a time,
but the extraordinary growth of railway systems
all over the world led to important developments
by Lalanne (1841), Massau (1884), and Lallemand
(1886).

The idea of using collinear points, which constitutes
the chief beauty of the method of the present book,
was developed by d’Ocagne (1884). It was d’Ocagne,
too, who applied the name NoMOGrRAPHY to this

method, in his book Les calculs usuels effectues au
X1



xii HISTORICAL SKETCH

moyen des abaques (1891). Since then further exten-
sions have been made by d’Ocagne and others.

In recent years the utility and convenience of
nomography have been increasingly realised, and
the subject has gained in importance and recognition,
particularly in engineering practice. It is, in the
main, a product of French mathematical genius.
Articles have appeared in one or two English journals,
and excellent accounts of the subject in English are
to be found in Hezlet’s Nomography (Royal Military
Institution, Woolwich) and Lipka’s Graphical and
Mechanical Computation (Wiley, New York). Other
books which may be consulted are Rose’s Line Charts
for Engineers (Chapman & Hall, London), and Hewes
and Seward’s Design of Diagrams for Engineering
Formulas (McGraw Hill, London).

But the reader who is interested in the subject
cannot do better than read d’Ocagne’s excellent Traité
de Nomographie (G. Villars, Paris, 1899), as well as
Principes Usuels de Nomographie by the same author
and publishers.



NOMOGRAPHY

INTRODUCTION

1. Object of Nomography.

We are all familiar with graph-drawing as a means
of solving equations. But ordinary graphical methods
are often inconvenient, because a separate graph is
required for practically each equation we have to
solve. Thus, to solve the quadratic equation

2+ —2=0,

we need to draw the graph y=a?+z, and find where
it is cut by the line y=2. To solve the equation
2?+2x—2=0, we must draw the graph y=2*-2z,
and similarly for other values of the coefficient of z,
The object of Nomography s to enable us to solve all
equations of a giwen type by means of omne diagram.
Thus all quadratic equations of the type 22 +ax+b=0
can be solved by means of one graph which can be
drawn once for all. In the same way all cubic
equations of, say, the form 2®+4ax+b=0 can be
solved graphically by means of one diagram. Such a
diagram is called a Nomogram.

It is also the object of Nomography to enable us
to find the value of a complicated expression graphi-
cally. Let us consider, e.g., the formula for the

B N. A S



2 NOMOGRAPHY

pressure R in pounds on a flat plate normal to a passing
current of air, viz.,

R=0-0194WSV2 (Ibs.),

where W is the weight of the air in pounds per cubic
foot, S is the area of the plate in square feet, and V
is the relative velocity of the air in feet per second.
If the pressure has to be found for a number of
different plates at various velocities, it is obviously
convenient to have a diagram which, having been
constructed once for all, can be used for any wvalues
of W, S, and V that are likely to occur.

In the present volume we shall consider in a simple
manner how to construct and use nomograms for
multiplication and division in formulae like the one
for air pressure, as well as the more general methods
applicable to easy algebraic and other equations.
As an introduction to the nomograms for multi-
plication and division we shall consider first the
construction and use of nomograms for addition
and subtraction.

2. Method of Nomography.

The method of Nomography is as follows. Suppose
that a number 2z i1s determined when two numbers
a, b are given ; e.g. let x=ab or a/b or 3a?/b3, or let

x be given by 22 +ax+b=0,
or asin z+bcos £+1=0;

then two straight lines a, b are graduated (Fig. 1),
and a curve (which we shall, when necessary, call the
x curve) is also graduated in such a way that, if
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a straight line is drawn joining the graduation a on
scale a to the graduation b on scale b, the line cuts
the = curve at the graduation x, where x 1s the desired

Fie. 1.

result. Thus, in Fig. 2, the line joining the point @
on the scale a to the point b on the scale b cuts the
curve z at a point whose x coordinate (or abscissa)
is a solution of the equation #*4-ax-+b=0.
Sometimes the z curve and the @, b scales are three
parallel ines. In Fig. 3 we have a nomogram for

the formula R=0-0194WS7V2.

already mentioned. If the line joining the appro-
priate point on the W scale to the appropriate point
on the S scale 1s made to cut the °‘ reference line,”
and this point of intersection 1s joined to the appro-
priate point on the V scale, the join cuts the R scale
at the graduation giving the value of 2. The theory
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INTRODUCTION 5

of such nomograms is very much easier than that of
more general types. We shall, then, commence with

1 1 1
9 9
8 5 8
7 2 7
8 3 8
5 4 1 5
5 9
6 8 4
4 7
8 7
8
1
3 6 3
‘ s
2 4 2
3
4
e 15 3 1-5
3 5
g 6
= 7
:
[
[ 1 1 2 1
w§s v S w
1-5
1
R
FiG. 8.

these simple forms, which includs all cases involv-
ing addition and subtraction, or multiplication and
division of numbers raised to given powers.



CHAPTER 1

NOMOGRAMS FOR ADDITION AND SIMULTANEOTUS
EQUATIONS

3. Nomogram for Addition

In Fig. 4 we have three parallel straight lines:
the outer ones, a, b, are graduated with the same unit,
the middle one, #, is midway between ¢ and b, and is
graduated with half their unit. The zeros are
collinear ; in our case they are all on a line per-
pendicular to the scales. If now we take the gradua-
tion @ on scale @, and the graduation b on scale b,
the line joining them cuts scale z in the graduation
a+b. This is because

twice distance x=distance a+distance b,

and the unit used to measure the distance Oz is
purposely made half of that used for Oa and 0b, so that

graduation x =graduation a+graduation b.

Thus we have in Fig. 1 a nomogram for addition. If
any straight line cuts the three scales at graduations
a, b, z, we have z=a +b.

This is the principle of nomography The expression
a+b represents a type of calculation, namely the

addition of two quantities. For this type or law
6



ADDITION 7

(nomos =law in Greek) the scales in Fig. 4 can be used
for all values of @ and b. Theoretically there is no
restriction on these quantities; but if we have large
values of a and b we need an inconveniently long

1

-
o]

20
i8
16
14
12

—+10
Sy
is
>
£ 6

Ilnll.;;'nnlln
T

0O =N O HAOONOO
|
|
IS

A

-3 —]
. — ]
-5 ——
-6 -6
-7 -7
-8 —-8
-8 -;— -8
-10 JE P
y;) x r’4

Fic 4.

figure. This is obviated by taking out a common
factor in the form of a multiple of 10. Thus we
graduate ¢ and b from —10 to +10, and z from —20
to +20, with subdivisions as far as is possible—this,
naturally, is determined by the size of the diagram.
In Fig. 4, which is made small for convenience of
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printing, fifths are given for @ and b, so that fiftieths
can be estimated very approximately by the eye,
and halves for ®, so that twentieths can be
estimated. Then to add up 255 and 720, we take
the point 2:55 on scale @, and the point 7-20 on
scale b. The line joining these points cuts the scale x
at the graduation 9-75, so that the number required
is 975.

Very small quantities can be treated in the same
way ; thus, to add up 0-0205 and 0-0435, we take the
point 2-05 on scale a, and the point 4-35 on scale b.
The line joining them cuts the scale « at the point 6-40,
so that the sum required is 0-0640.

It is of course clear that we would not in practice
want to use a nomogram for mere addition; but,
as the fundamental ideas of nomography are well
illustrated by the elementary problem of addition and
subtraction, it is well that the reader should study
the use of nomography for addition and subtraction,
and so make himself thoroughly familiar with the
idea and the underlying principles.

4. BExtended Nomogram for Addition.

Suppose now we wish to find the values of a+2b
for all different values of @ and b, 7.e. we desire a
nomogram for the type z=a+2b. We take scales
a, b as before (Fig. 5), graduated with the same unit,
but let the third scale z be twice as far from a as it
is from &, and let 1ts unit of graduation be one-third
of the unit used in @, b. Let a straight line cut the
scale a at the point a and the scale b at the point b.
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If it cuts the scale # at the point z, then, by elemen-
tary geometry, we have that
three times distance x=distance a -+-twice distance b.

10 T 30 10
9 I ]
8 -E-_-25 8
7 Fo0 7
8 I [
I
& 13 5
4 31’ 4
3 -::10 3
2 I 2
+5
1 + 1
o o o
-1 ¥ -1
-2 T-5 -2
-3 I -3
—t=10 ¥
-a I +-4
-5 315 *-5
-6 ;s -6
-7 ¥-20 F-7
-8 F--25 i
-e T +-o
-10 X.30 Z 10
/) x a
F1a. 5.

As the unit used in the scale z is one-third of the
unit used in scales a, b, it follows that
graduation x =graduation a-twice graduation b.

5. Negative Quantities.

It is clear that the nomograms in Figs. 4 and 5 can
be used for negative values of a, b as well as for
positive values. Thus, in Fig. 4, if we take 2:00 on
scale @ and —4-45 on scale b, we get the result —2-45
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on scale z. Although we would in ordinary arith-
metic call this subtraction, yet, for purposes of nomo-
graphy, we shall adopt the algebraic method of using
the term addition even if we have negative quantities.
Thus we shall talk about a+b& or 425 and use Figs.
4 and 5 for all values of @ and b, with their proper
signs attached. The sign of z will be given auto-
matically by the nomogram. We shall consider
expressions like ¢ —b, o —25, later.
6. Generalised Nomogram for Addition.

Using the idea of Fig. 5, we can now construct a
nomogram for =Ila-{mb, where I, m are two given

50 x 10

+9

40 *+8

7

30 +6

20 —ta

40 .

~+0 +o

F-1
+10 -2
—~~20- -a
£-30 X
3 F-7
-4--40 F 5
i -9

“=-50 F1e, 6, .0
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positive quantities. We take scales @, b as before,
but place the scale x so that its distance from the
scale a 1s to its distance from the scale b in the ratio
m : 1. If a straight line cuts off distances @ on scale a,
b on scale b, and z on scale z, then

(I +m) x distance x=I x distance a +m X distance b,
by easy geometry of similar triangles. Now let us

1 of the unit
I +m

used in scales @, b. Then we have the result :

graduate the scale = so that its unit is

graduation x=I[ x graduation a+m X graduation b,
so that x =l +mb.

In Fig. 4 we had [=1, m=1; in Fig. 5 we have
=1, m=2. In Fig. 6 we have used [=1-5, m=3-5,
so that the distance of the scale z from the scale a is
to its distance from scale b in the ratio 3-5:1 5,
2.e. 7:3, and the unit used in scale z is —1__
L of the a, b unit.

7. Simultaneous Simple Egquations. Nomograms with Con-
stant Unit

It is clear that the use of a unit in the x scale

1
l+m
is not convenient, for two reasons. Firstly, [ 4+m may
be a large quantity, so that the x unit may become too
small. Secondly, we must in practice avoid the use
of widely differing units as far as possible, as well as
the necessity for regraduating too often. But, at
present, in view of the intended application to simul-
taneous simple equations, we shall introduce only
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a slight modification, which we shall illustrate by

reference to one or two simple cases. .
In Fig. 7 the scales a, b, z. y are all grg,dua!:ed In
exactly the same way, but the scale z is midway

10

[
/o-e:qmcoa

-2 -2
-3 -3
-4 -4
-5 -5
-6 -6

$-s +-8

[ X799 ITTY IV YTTL [9O0 OO
LA2 LAAI LARE AALAD LREL) LR R

-8 -8 ::

-9 -9 +-9 -9
-10 -10 E .10 . -10
& y x a
Fia. 7.

between scales a, b, and the scale y 1s twice as far
from a as it is from 4. Let a line cut all the four
scales. It is easy to show that

twice distance x =distance a +distance b,
3 tvmes distance y =distance o +twice distance b.
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Hence we get, since all the scales are graduated alike,
twice graduation r=graduation a-+graduation b, '
3 tvmes graduation y =graduation a-twice graduation b.

10 10 10 10
2] 9 9 9
8 8 | 8
7 7 7 7
8 6 6 8
5 5 5 5
a 4 4 -3
3 3 3
2 2 2 2
1 1 1 1
o 0 o} o
-1 -1 -1 -1
-2 -2 -2 -2
-3 -3 -3 +-3
-4 -4 -4 -4
-5 -5 -5 5
-8 -8 -8 =-6
-7 -7 -7 -7
-8 -8 -8 -8
-9 -9 -9 -9
-10 -10 -10 -10
b kY x Q
Fic 8.

If now we consider a and b as two unknown quan-
tities, we have for them the two equations,
a +b=twice graduation z,
a +2b =3 times graduation y.
Suppose now we have to solve the simultaneous
equations a+b=17, a+2b=12;
we take the graduation 7/2, ¢.e. 3-5 on scale z, and the
graduation 12/3, 7.e. 4 on scale y: the line joining
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these points cuts the scales a, b in the graduations
a=2, b=5, which are the solutions required.
In the same way, if we have to solve the equations
3a+2b=15, a-+6b=13,
we write the equations in the form
8 times graduation a-+-twice graduation b
=5 times graduation z,
graduation a6 times graduation b
=7 tumes graduation y,
so that the graduation z to be used is 15/5, 7.e. 3,
and the graduation y to be used is 13/7, 7.c. 1-86.
In Fig. 8 the scales a, b, =, y are all graduated alike,
but the x scale is 2: 8 as far from @ as it is from b,
and the y scale is 6 times as far from @ as from b. If
we join the graduation 3 on the z scale to the gradu-
ation 1-86 on the y scale, the line cuts the @, b scales
in the solutions required, namely
o=4, b=1-5.
We can now proceed to the general problem.

8. Simultaneous Equations.

Let the scales a, b, z be all graduated with the
same unit, so that we have three exactly equal scales,
the distance of the scale « from the scales @, b being
in the ratio m:l. A line which cuts the scales at
graduations @, b, z will give us the value of la-+mb,
if we multiply the graduation z by I +m.

X

Take now any point # (i.e. graduation T+ oo the

scale z) : any line through 1t will cut the a, b scales
at graduations which are such that lag-+mb=~—z.
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There are an infinite number of such lines through
the point z, and, therefore, there are an infinite
number of pairs of values a. b satisfying the equation
la+mb=z. If we can have another piece of infor-

7 ol
f 100~ 1 7
T— 10

3
8

YN RO OON DO

;

NP
\

34

F1a. 9.

mation so as to decide upon the particular line through
z to be used, we shall have unique values of a, b.
This information can be supplied by another equation,
UVa+m'b=y. Let us then introduce a fourth scale,
y (Fig. 9), equal in all respects to the a, b, = scales,
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but dividing the distance between a, b in the ratio
m’ : ', and let the y graduations be I’ +m’ times the
y distances. Then a line passing through a point y
('i.e. graduation 7 —f?-/m'> cuts the scales a, b at gradua-
tions satisfying the equation l'a+m'b=y.

If, therefore, we take the line through the point

. €x .
& (graduatlon m) on scale z, and the point y

(graduation 77 -;?—!m’> on scale y, it cuts the scales a, b
at points whose graduations satisfy the simultaneous
equations  lgt+mb==, la+m'b=y.
In other words, we have a graphical solution of these
simultaneous equations, in which %, y are given
numbers and a, b are the unknowns.
Thus, in Fig. 7 we have m : [=1, m' : I’=2, so that
Fig. 7 is a nomogram for the equations
a-+b=x, a-+2b=y,
in which we use the graduations z/2 and /3 on the
x, y scales respectively. Also, in Fig. 8, m:[=2: 3,
m’:1’"=6:1, so that we have a nomogram for
3a+2b=z, a-l6b=y,
in which we use graduations z/5 and y/7.

9. Nomogram for all Simultaneous Equations with Positive
Coefficients
If we wish to construct a nomogram to be used fos
all positive values of [, m, ', m’, we have to construct
z, y scales for all ratios m : I, m’:I’. We have then the
following method.
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10. Segmentary Scale.

Let AB be a given line (Fig. 10), and let P be a
point on this line between A and B. The position
of P is given by the ratio 4P : PB.

Let the value of AP : PB be put at the side of the
point P. If this is done for a (convenient) number
of values of the ratio AP : PB, we have a segmentary
scale, 7.e. a scale in which the graduation at any

JeoYio WU M U Vs 1 5 2 a8 as 10 20
B
Yo 40
fa)
) 4 2 8 4 5 & 7-891 5 2 8 as 10 20
A B
40
(5)
Fiae. 10.

point gives the ratio of the segments. The mid-point
1s marked 1, on the right we have graduations greater
than 1, on the left graduations less than 1. The
segmentary scale can be graduated in one of two ways.
Either the graduations less than 1 are given in the
form of reciprocals, as in Fig 10 (a), or they are given
in the form of decimals, as in Fig 10 (b). We shall
find both forms useful. For simultaneous equations
we use the form 10 (a).

11. Nomogram for Simultaneous Eguations.

Take two equal parallel scales a, b; graduate the
distance between them as a segmentary scale, 10 (a),
and draw lines through the graduations parallel to

@, b. Through the graduations of a, b draw lines
B.N. B
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parallel to the segmentary scale. We thus get Fig. 11,
in which we have for any given segmentary ratio a
scale graduated like a, b.

Sas 3 )
6 doss t A : L ::‘s 15 2 3 5 10 15703 6
z o
5 5
4 4
3} 3
2 2
1 1
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- -2
-3 3
“ 4
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To solve the equations la+-mb=z, l'a+m'b=y,
take the point —%_@ on the scale m : I (by interpolation

[+
at sight if necessary) and the point 7 —{?—/m’ on the scale
m’ : I’ ; the join cuts a, b in points giving the solutions

required.
Thus,-to solve the equations
3a-+8b=23, 4a-1-5b=18,
we take the point 2% on the scale 8 : 3, and the point
18 on the scale 5:4. The line joining the points
cuts the a, b scales at a=1-71, b=2-23, which are the
solutions of the given equations.

12. Simultaneous Equations with Negative Coefficients.

Fig. 11 can be used for all values of z, y, positive
or negative (see § 5), and the solutions a, b will come
out with their proper signs. We have, however, to
solve equations in which the coefficients I, m, I, m’
may be negative, whereas the nomogram in Fig. 11
is constructed for positive values of the ratios m : [,
m' :l'. But this nomogram can really be used always.
We can assume [, I’ both positive, since, if either is
negative, we can introduce a negative sign all through
the corresponding equation: e.g. —a+3b=5 can be
written a —3b= —5. If now m, m’ are both negative,
we can put b= —b, and we get two equations with
positive coefficients. Thus, equations

a—3b=—5, 2a—b="7
can be written
a+38b' =—5, 2a+b =7,
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-y

where b’ = ~—b, and then we can use the nomogram
of Fig. 11, calling b, b’. For the equations just given
we take the point —% on the scale 3: 1, and the point %
on the scale 1:2, and we get a=52, b’=-—34, so
that the solutions required are a =52, b=34.

If m, m’ are not both negative, but one positive and
the other negative, say m positive and m' negative,
it is an easy matter to add a multiple of the first
equation to the second so as to make the coefficients
all positive. FE.g., to solve the equations

3a-1-8b=23, a—3b=—5,
we add once the first equation to the second, so that
we get 30 18b=23, 4a-5b=18,
and we solve as already suggested (§ 11).

13. Extended TUse of the Nomogram for Simultaneous
Equations.

The nomogram of Fig. 11 will do more than merely
solve for a and b. It will give us directly, without
finding @ and b, the value of I"a+m"b, it being given
that la+mb=z, 'a+mb=y. Find the point 2 _
l+m

on the m : [ scale, and the point on the m’: [l

Y
U +m'
scale; let the join cut the scale m”:1” (assumed
positive) and multiply the graduation obtained by
l"4+m” : the result is the required value of I”a+m”b.
Thus, to find the value of 2a 4 6b, where 3a +8b =23,
a—3b=—5, we use the equations 3a+8b=23,
40+5b=18; we take 33 on the scale 8:3 and 18
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on the scale 5:4; the join cuts the 6:2, 7.e. 3:1,
scale at 2-1, giving, on multiplication by 8,
2a +6b=16-8.

With negative values of I”, m” we can proceed as
in § 12.

Thus, —2a—6b=—(2a¢+6b)=—(16-8)=—16-8.

To find the value of 2a¢ —6b, we use the fact that
3a+8b=23, and put

(2a —6b) +(3a +8b) =5a +2b,

so that 2a —6b=5a +2b—23.

We find 5a+2b, and we get 2a —6b=—9-96.

Exampres I.

Note.—Nomograms should be constructed on sheets of stout
paper or cardboard of the usual quarto shape and size. The
figure in each case should be as “ square’’ as possible, 7.e. the
whole should be roughly contained within a square. At first,
for practice, squared paper may be used. 'When some experience
in the construction of diagrams has been obtained, it is better to
use plain white sheets. In graduating the scales 1t is useful to
adopt the following rules :

(1) No two subdivisions should be less than 1 mm. apart ;

(ii) Useful subdivisions are halves, fifths, tenths, twentieths,
fiftieths, etec. ;

(iii) Where changes in the manner of subdivision are intro-
duced, they should be at well-marked positions, as
e.g. at the ends of whole numbers.

It will be a profitable exercise to construct the segmentary scales
10 (a), (b) with units 15 em , 20 cm , 30 cm. respectively, putting
m all the useful subdivisions in each case TFig. 10 (a), (b) 1s
drawn for an 8 5 cm unit, and should be studied in the hght of the
rules just given.
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1. Construct nomograms for
(i) 2a-5; (i) a—-2b; (ii) 172 +2:3b ;
(iv) a—3b; (v) —-%a+3%b; (vi) 3a +3b,
2. Solve by means of a nomogram the equations
2r-2y=5; xz-3y=-".
Deduce the values of Tz +y; 20 —5y; —x +2%y.
3. Comnstruct a segmentary scale with 10 cm. unit, and extend

1t on both sides so as to include negative graduations from
0 to —0-5 and from — 2 to o respectively. Insert all the useful
subdivisions.

4. Construct a nomogram for la + b =mnc, it being given that
2+b+c=100, to be used for all positive values of I, m, .



CHAPTER 1I

GENERALISED NOMOGRAMS FOR ADDITION AND
SUBTRACTION

WE have seen how the simple idea with which we
started off in Chapter I, § 3, can be applied to the
construction of a nomogram for -comparatively
complicated calculations. Before proceeding to the
application of the idea to successive additions
and subtractions we shall consider one or two
modifications in the method already described.

14. Nomograms with Equidistant Scales.

Compare Figs. 4 and 5. It has already been pointed
out that in the latter we have two changes—the scale
z is displaced and differently graduated. For the
purpose of simultaneous equations it has been found
useful to keep the = graduations invariable for all
values of I, m in la +mb =z ; in fact the z graduations
are made the same as the a, b graduations (§ 7)
For purposes other than the solution of simultaneous
equations it is an advantage to arrange that the
z scale shall have a stationary position, smnce the
finding of the position of the x scale involves finding

the segmentary division 4 :[, and this introduces
23
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some error. We shall now see that we can arrange
to have the z scale not only fixed in position, but
also graduated in a fixed manner. The method
is shown in Fig. 12.

5 20 10
18 i 9
v 16 -;:— 8
14 7
3 12 +e
10 +5
2 8 -3- 4
6 -EE— 3
1 a +2
2 F1
o +o0
i 2
-1 -4 Y
s ts
-3 -12 :i::--G
=14 *-7
-4 -16 +-8
-18 *-9
-5 -20 E0
% a
Fre. 12.

Let the scales a, z be as in Fig. 4, but graduate the
b scale with a unit double that of @, so that we have
three parallel scales @, z, b;  midway between @ and b,
the unit of a being twice that of z, and the unit of b
being four times that of z. Now, if a straight line
cuts the scales at a, z, b, we have

tunce distance x =distance a +distance b.
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It follows that

graduation xr=graduation &-twice graduation b.
In algebraic symbols we have

r=a-+2b.
r~10.
i
+9
20 +s
18 7
16 I.
10 @ I 6
9 ¥
8 12 ¥
7 10 *4
6 4
5 8 -_E- 3
4 6 i 2
s 4 2
2 -
F1
1 2 2
) ) +o
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-2 . T
-3 - .EE-z
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-8 -12 _:E__s
-9 -14 ¥
~10 F-6
& -16 I
-18 T7
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x I
-+ -9
¥
T
I 10
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We thus have another nomogram for a-+2b, which
is preferable for most purposes to that of Fig. 5.
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The method can be extended to
z=la-+mb

for all values of I, m. Take three parallel scales a,
z, b; make the o unit 2/ times the = unit, and the
b unit 2m times the z unit.

The geometrical fact that three collinear points a,
z, b give

twice distance x=distance a-+distance b,

now becomes
graduation x=I1 X graduation a+m X graduation b ;

algebraically, x=lg +mb.

Thus, when w=%a+43b, we have [=1%, m=$%, so
that the a scale is made with a unit 23 times the z unit
and the b scale with a unit 14 times the z unit (see

Fig. 13).

15, Subtraction, Simple and Extended.

We can now introduce negative coefficients. Sup-
pose we require a nomogram for z=a—b. Looking
upon this as a case of z=la+mb, in which =1,
m=—1, the way to make such a nomogram is at once
suggested. Take three equidistant scales a, z, b, the
z scale being midway, and graduate the a scale with
twice the z unit, and the b scale with minus twice the
¢ unit, ¢.e. with twice the 2 unit but with the signs
of the graduations reversed. For collinear points a, z,
b we have (Fig. 14)

turce dustance x=dastance a +distance b,
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so that

graduation x=graduation & —graduation b,

i.e. algebraically T =a—b.

The reader is advised to note this special case with particular
attention, as it will play an important part in what follows.

-10 20 -’E 10
-9 18 +9
-8 16 ag 8
-7 14 -:§ 7
-6 12 -fi 6
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-2 4q -- 2
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1 -2 ::-1
a -6 i-e
a -8 *-a
6 -12 E
7 -14 --—7
s -16 ';:;-"3
8 -i8 E
10 -20 £-10
o x a
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More generally, if in  =la +mb, one or both of the
coefficients I, m are negative, we reverse the signs in
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the graduations of the corresponding scale. Thus,
in Fig. 15 we have the nomogram for

x=a—2b,
being in fact the same as that given in Fig. 12 for
r=a-+2b,
but with the signs of the b graduations reversed.
-5 20 10
18 9
- 16 8
14 7
-3 12 6
10 5
-2 8 4
6 2
-1 a 2
2 1
o o o
-2 -1
1 -4 -2
-6 -3
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4 ~16 .‘i...a
5 -20 310
/3 x Q
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16. Generalised Addition with an Added Constant.

We have to note one more respect in which th
nomogram for the addition of two quantities need
to be extended. This arises in the case when
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constant quantity has to be added on to the result
obtained by adding two numbers which can assume
any values. Let us consider

r=a-+b+1.
This can be written
z=(a+1)+b,
22 T!o
10 20 +9
9 18 +8
8 16 +7
7 14 e
e 12 -3:-5
5 10 T4
a 8 *+3
a 6 2
2 4 +1
1 2 +o
o o *4
-1 -2 -5—-2
-2 -4 -::--3
-3 -6 s
-2 -8 +-5
-5 ~10 +-6
-8 -12 <37
= - *-8
-8 -16 ":-'9
-9 -18 L0
a
-10 -20
b x
Fie¢ 16
which means that each point on the @ scale of the
nomogram for r=a-+b

should be graduated one a unit less, as in Fig. 16.
(It need hardly be pointed out that the same result
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is obtained by modifying the b scale instead of the
@ scale, or by modifying both in such a way that the
total effect is to add on 1 to the value of a-+b as
given by the graduations on collinear points. In
any particular case circumstances and discretion will
decide the best course to adopt. The same applies
to other such examples in the sequel.)
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17. Generalising at once we see that to obtain a
nomogram for x=Ila+mb+n,

take three parallel scales a, z, b; 2 being midway
between a and b; take the zero of z, the graduation
—n/l of a, and the zero of b collinear; graduate
a with unit 2/ times that of « (signs reversed if [ is
negative), and graduate b with unit 2m times that of
z (signs reversed if m is mnegative). Then three
collinear points a, z, b give
tunce distance x
=distance a-+distance b+2n units of z,
1.e. twice no. of x units
=2l(no. of a unwts)+2m(no. of b units)
+2n(no. of  umits),
i.e. graduation x
=[x graduation a+m x graduation b+n,
or algebraically z=la+mb-4n.

In Fig. 17, we have taken I=1%, m=—3%, n=23%.

18. Successive Addition

We have so far considered only the case of two added
quantities la, mb, with a possible added constant.
It is now required to extend the method to three
and more added quantities. ILet us begin, as before,
with a special case. Take

x=a-+b-+c.

The method that suggests itself is to add @ and & by
the nomogram of Fig. 4, and then to add (a+b) and ¢
by another such nomogram. Let us put

y=a-+b, x=y-+c.
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If we use the nomogram of Fig. 4, we must have the
y scale half way between a and b, and the z scale half
way between y and c. Also the three scales a, b, ¢
must be quite distinet. The most compact arrange-
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ment 1s shown in Fig. 18. Hurther, the v unit is half
of the @ or b unit, and the ¢ unit must therefore also
be half, and the  umt a quarter of the @, b unit.
Fig. 18 is therefore obtained as follows. Take three
parallel lines a, y. b at convenient equal intervals, and
having graduated a, b equally, graduate y with hall
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the @, b unit. Now take parallel lines ¢, z, so that x
is midway between y and ¢, and the distance of z from
4y is, say, two thirds that of b from y. Graduate ¢ in
the same way as y, and « with half the y unit, 7.e. with
a quarter of the a, b unit. Take the point ¢ on the
a scale and the point b on the b scale : the join cuts
the y scale at the graduation a-+b; join this point
to the point ¢ on the ¢ scale; the line thus obtained
cuts the x scale at the graduation o +b&6+-c.

One fact is immediately made evident. I¢ 7s mot
necessary tc graduate y at all, since the actual value
of a-+b is not really required—only the position of
the a+b graduation on the y line is wanted. We
therefore leave the y line——called a Pivotal or Refer-
ence Line—undivided. Further, we must indicate
where the operation begins. We therefore draw cross
lines as shown in Fig. 18, the arrow-feathers showing
where to begin, and the bending of the cross lines
where the reference line is crossed.

But it is further clear that the successive appli-
cation of the addition nomogram must soon lead to
impracticable diagrams. The more obvious difficulty
is the successive diminution in the units, which, if
allowed to continue, must result in Inconveniently
fine graduations or uselessly gross and inaccurate
readings. The other difficulty is that in order
to keep the wvarious scales distinct, the width of
the nomogram will, after a few additions, become
unmanageable.

To overcome the first difficulty, namely the dimi-

nution in the units, we must evolve a nromogram for
B.N. C
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addition in which the result of the addition s on a scale
with undiminished unit.

This is at once obtained by means of the nomogram
for simple subtraction (Fig. 14). Referring back to
Fig. 14, we see that if the @, b graduations are equal
but in opposite directions, and the z graduations are
with half the o unit in the same direction as the «
graduations, then three collinear graduations a, z,
b give x=a—b, 1.e. a=b+2a.

Hence the sum of two quantities b, = is given in the
same unit as that used for one of these quantities,
namely . Hence we get a new and

19. Alternative Nomogram for .Addition.
Rule I To find x=a-+b

take three parallel lines a, b, «c; b being midway between aand
x. Graduate ¢ with a convenient unit. then » with the same
unit in the opposite direction ; finally graduate b with half the
« unit, and also in the opposite direction, the three zeros being
collinear Three collinear graduations will then satisfy
the given equation (Fig. 19).

We shall use this alternative nomogram for addition
in all cases where the process of addition has to be
carried out

Incidentally it will be seen that since the result of
the addition is on one of the exterior lines, the succes-
sive application of this nomogram will lead to more
compact diagrams.
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20. Nomogram for a-+b-}ec.

We proceed to illustrate the use of the alternative
method of the last article by application to the case

r=a-+b+ec.

In Fig. 20 take a scale up and scale b at half uniit
down : we get a+b—reference line—at full unit down,
but not graduated. Now take scale ¢ at half umit up,
in some convenient position between a-+b and b:
we get a+b-+c at full unit wp. The cross lines show
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the order of the process and the starting point is
indicated by the arrow-feathers.
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21. Nomogram for x=a-+b-4c+4d.
We are now in a position to construct a more ex-
tended nomogram, as e.g. for

r=a-+b+c+d.

In Fig. 21, take a scale up, scale bat half unit down :
we get reference line (i), which is really a+b at full
unst down, but not graduated. Now take scale ¢ at
half unit wp, midway between a, b: we get reference
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line (ii), which is a 4-b+-c at full unit up. Take scale
d at half unit down, midway between a, c: we get
r=a+b+c+d at full unit down. A preliminary
sketch will at once indicate at what distance apart
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to take a, b initially in order that we may get nicely
spaced scales. The cross lines and the arrow-feathers
indicate the order of the process and the reference lines.

22. Subtraction.
The question now arises: What process shall we
adopt when we have both addition and subtraction
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in one nomogram ? There are several processes for
subtraction : thus Fig. 4 gives b=x—a, and Fig. 14
gives z=a—b. If we examine these figures we shall
see that, in subtracting, the final unit is bound to be
different from one or other of the quantities whose
difference is being found. It follows that in doing
additions and subtractions care must be taken to
avoid the successive growth or the successive dimi-
nution of the final unit. In order to render it
unnecessary to waste time in the taking of this pre-
caution in any actual case, it is therefore advisable
to adopt a definite rule, which can be followed without
regard to the special necessities of the case. The
method to be adopted will perhaps be most easily
grasped by considering a simple case.

23. Nomogram for a-+b—ec,

Instead of leaving the subtraction to the end, we
write the operations in the form

z=(a—c)+Db,

so that we shall subtract at once. In Fig. 22 we have
o with full unit up, ¢ with full unit down, so that the
reference line (#—c) is obtained midway and with
half unit up, but ungraduated. Now take b with full
untt down on one side of the reference line : we get
r=a—c +b with full unit up at an equal distance on
the other side of the reference line.
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24, Successive Subtraction.

A little thought will convince one that for any type
of operation involving additions and subtractions,
there are a number of different nomograms possible
Without claiming for the general rule to be given here
the title of being necessarily the best under all condi-
tions, its adoption is suggested as a means of introduc-
ing unity and compactness of treatment in this book
The reader can introduce variations at his discretion

Rule II When an operation involves a number of additions
and subtractions begin by adding up nomographically all the
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negative terms, subtract nomographically the sum from the first
positive term, and then add mnomographically the remaining
positive terms: each addition is to be performed by means of
the alternative method (§19).
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25. Nomogram for a—b-}+c-}d—e—f
We write this in the form
r=a—(0b+e+f)+c+d,

and first find a nomogram for b+e+f. In Fig. 23
we have b with full unit down, and e with half unit up,
giving us the reference line (i), which is b+e at full
umit up, but ungraduated. We take f with Aalf unit
down, and we get reference line (ii) (ungraduated),
which is b+e-+f with full unit down, the position of f
being so chosen that this reference line comes into a
convenient position, say midway between b and e.
Now take @ with full unit up, giving reference line (iii)
(ungraduated), which is ¢ —(b+e+f) with Aalf wnit up
(in the figure a is placed so that this reference line falls
at a convenient distance to the left of b). If we takec
with full wnmit down, we get reference line (iv) for
a—b+c—e—f with full unit up, and finally, taking d
with Aalf unit down, we get the final scale for

x=0—b+c+d—e—f

with full unit down.
The order of the processes is sufficiently indicated

by means of the cross lines, the arrow-feathers
showing the starting off line.

26. Generalised Nomogram for Addition and Subtraction.
The most general form that a series of additions
and subtractions can assume is
x=la+mb+nc+...—pf—qg...+s (or —s),
where I, m, n, p, . . . , S are positive constants. At the
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stage we have now reached we can construct a nomo-
gram for any such expression. The method will be
illustrated sufficiently by means of a special case.
Let us then take

x=150+b—7-5c —4§d+10e+4.

-10 10 -JO-.E'_zojE E 0 'E:“'Qo
9 -9-£-18% +9 +-18
7 7ia4t E7 F-14
EDUE I : ¥
6 -6 ':-'-12-_-E- * 6 +-12
5 siwf is F-10
3 T ¥ 1
—a .4:5- 8% T4 +-3
3 3 SSEBET 3 \j:"e
2 2 -4+ F2 ':.:?>
1 1 F2&  T1 e
® o Lo+ o I
1 - e E—
2 -2 2% 4% -2
T S
3 -3 ~ G4~ +
4 -4 rsf +
5 -5 E— 10F -+ —
3 ~ + bt —
8 -6 124 -F o i~ "
T F % g £ g
7 -7 E14-4=  F w1 .| 1
8 -8 :Ejs_:-: = 8 s 8
PFoF OF 8 g g
9 -9 184+ 4 8 R &
¥ + o 5] 7] [3]
10 «10 w0E&20L -0 M 20 & 5
x’ a b e ¢ a-c-d ad a+b c+d
~-c-d
F1a. 24.
We first work out a nomogram for
’
' =a-+b—c—d-te,

since we know that the coefficients and the added
constant can be taken into account in the graduation
of the scales. Fig. 24 gives such a nomogram, the
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analysis of which is left as an exercise to the reader.
We now proceed to construct the graduations. We
take (Fig. 25) the final scale to be with full wunit.
Remembering the rule of § 17, we therefore graduate
a with unit fifteen times that in the preliminary
nomogram already obtained, ¢.e. with unit 15 fimes
the full wunit; b with the full uns, since it must
be the same as in the preliminary nomogram ; ¢ with
7-5 times full unit; d with % of the unit in the pre-
liminary nomogram, <.e. 3 of the full umit; and e
with 10 times the unit in the preliminary nomogram,
t.e. with 5 times the full unit. The added constant
can now be put in at some convenient stage, say in
z itself, which is therefore made to have the gradua-
tion 4 where it would have had the graduation 0.

Rule III. To construct a nomogram for
x=la+mb+nc+...—pf—ag... +s (or —s)

L, m, ..., s being positive, first construct a preliminary nomogram

for
x'=a-tb+tct..—f—g...

in which each term has the same sign as the corresponding
term in az. Then multiply the o unit of the preliminary nomo-
gram by [, the » unit by m, etc. TFinally put in the added or
subtracted constant =S at some convenient stage.

Exampres I1.

1. Construct a nomogram for 2¢ +3b using the alternative
method, § 19.

2. Construct a nomogram for 2a — 3b +4.
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3. Construct nomograms for

(i) a +2b +3c; (1) a—-2b+3c¢;
(1) a+2b—38c; (iv) a +26+3c—4;
(v) a—2b+3c+5; (v1) @ +2b—3c—23%.

4. Construct a nomogram for —a +b +c.
Convert it into one for @ — b — ¢, and then into one for

9a —1b —4c + 3.

5. Construct a nomogram for le’-+%=x, in which a and & can
have values lying between 5 and 15.

Note—Let a’'=1/a, b'=1/b. Then xz=a'+¥&. Construct the
nomogram for this and then convert the a’, & graduations into
2, b graduations.

6. Construct a nomogram for g— 2=

7. Construct a nomogram for J—lt=0 517 (%; —15 .

8. Convert the nomogram for a +b=c into one for a® +b%=c?;
this will give the diagonal of a right-angled triangle in terms of
the sides.

9. Construct nomograms for
(i) v=u +32¢; (1) v?=wu?—64s; (i) v2=1u? + 64s.
10. Construct a nomogram for 42%=:(a® + 5% +c2).



CHAPTER III

NOMOGRAMS FOR MULTIPLICATION AND
DIVISION

Ir the reader has made himself familiar with the
methods and results of Chapters I. and II., he will be
able to proceed to the construction and use of nomo-
grams for processes involving any number of multi-
plications and divisions by factors raised to any
powers. It is necessary to begin with an account of
the

27. Logarithmic Scales.

It is probably safe to assume that everybody who
1s interested in practical calculations is familiar with
the scales 4, B, 0, D of the ordinary slide rule. Thus

(@)

15 2 3 4 5678091 15 2 3 4 567891

' ter?
R e e ] (3)

1 1.5 2 3 4 5 6 7 8 9 1
Fia. 26.

scales U and D are as shown in Fig. 26 (b), but on
a larger scale. The distance of any graduation
from the beginning of the scale is proportional to the

logarithm of the number of the graduation. Hence
46
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the beginning of each scale is marked unity and the
end should be marked ten. Since, however, powers
of ten do not affect the mantissa, 7.e. the decimal-
fractional part of a logarithm, 1t is usual to mark the
end of each scale unity—we can, in fact, consider
the scale to refer to numbers 10® to 107+, where n
is a positive or negative whole number.

To construct a logarithmic scale we take a uniformly
graduated line, as e.g. on a sheet of squared paper,
and mark off the logarithms as given in the Tables—
this is sufficiently accurate for our purpose.

We first put in the numbers 2, 3, ..., 9. Then we
estimate how many subdivisions to include between
1 and 2, 2 and 3, and so on, remembering as mentioned
in Chapter I., Note, that

(1) Graphically it is of litvle use to deal with
excessively small intervals; in fact, the smallest
subdivisions must not be much less than 1 mm.,
or = inch. )

(i) The whole of any one interval 1 to 2,2 to 3, ...
must be subdivided in the same way.

(i) The useful subdivisions for facility in reading
are halves, fifths, tenths, twentieths, ete.

(In addition to the exercise in Ch. I. Note, it would
be a very instructive exercise for the reader to study
the slide rule scales from this point of view : in the
ordinary rule the C, D scales are each 25 centimetres
long, whilst in the 4, B scales a 1-10 interval is just
half, 7.e. 12'5 centimetres long. He will find that the
smallest subdivisions are a little more than 3 mm.—this
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is because the graduations are carried out with special
care on material specially chosen for the purpose.)

Note.—For practical purposes it is useful to remember the
following simple method for obtaining the main graduations in
a logarithmic scale. Having chosen 10 convenient units—say
inches, or centimetres, or halves—then the numbers 2, 4, 8 are
given by 3, 6 and (slightly more than) 9 units from the beginning.
The number 5 is given by 3 units back from the end ; 3 by very
nearly 4% units from the beginning and 9 by a shade less than
} unit from the end. We thus have the numbers 1, 2, 3,4,5,8, 9,
10. The number 6 is got by adding 3 units to the graduation 3,
and 7 by simple interpolation. The subdivisions 1%, 2%, 3} and
4} are given by taking 3 units back from the graduations 3, 5,
7, 9 respectively ; the other half integers by interpolation. Other
subdivisions can also be derived in this way. A little practice
will enable one to remember this method and to produce ex-
peditiously sufficiently accurate logarithmic scales for the purposes
of nomography. A good check is obtained by the consideration
that the intervals corresponding to equal numerical differences
must continually dimimish from the beginning to the end of the
scale.

The fundamental principle in the use of a logarithmic scale
is that if we add up the geometrical distances corresponding
to two numbers we get the geometrical distance for the product.

This is the basis of the slide rule process for multipli-
cation and division by the use of the scales C' and D.
But scales C and D are each only one interval, say
1 to 10, or 10 to 100, or in general 10” to 107+1, where
n 1s a positive or negative whole number. If wider
ranges are required, we need to use, say, two such
intervals, corresponding to 1 to 100, 10 to 1000, or
generally 10* to 107+2. This is provided by the 4, B
scales, which are given in Fig. 20 (@) to compare with
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C, D. If still wider ranges are desired still more
intervals may be provided. For ordinary purposes
the 4, B scales in the slide rule are found sufficient,
since we treat each factor that we have to use as
being between 1 and 10, and decide on the position
of the decimal point in the final result by common
sense or by means of a very rough check.

28. We now proceed to convert the addition and sub-
traction nomograms into multiplication and division
nomograms, by means of converting the regular
scales of Chapters I. and II. into corresponding
logarithmic scales.

29, Nomogram for Simple Multiplication and Division.

In Fig. 4 let us convert a 0 to 1 interval on a regular
scale into a 1 to 10 logarithmic scale, designated by
a capital letter. We thus get Iig. 27, in which the
A, B scales are exactly similar and range from, say,
1 to 10, and the X scale is midway, and graduated
with Aalf unit, so that it ranges from 1 to 100. If now
we have three collinear graduations 4, X, B, we have,
if the 1 graduations are collinear,

twice distance X =distance A +distance B,

so that, as X is graduated with Aalf unit of 4, B, we
have

log graduation X =log graduation A +log graduation B,
1.€. X=AB, or B=X/4, A=X/B;
so that we have a nomogram for multiplication and

division that can be used for values of 4, B ranging
from 1 to 10, and of X from 1 to 100.

B. N. D
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30. Alternative Nomogram for Multiplication and Division.

As has been explained in the case of addition
(Ch. II., § 18), it is not desirable to use the fundamental
nomogram, especially when successive multiplications
have to be carried out. We therefore introduce an
alternative method, which i1s obtained from the
alternative nomogram for addition, Fig. 19.

Rule IV. To make a nomogram for

X =AB,
we take A and X with the same unit, but with the gradua-
tions in X in the reversed order to that in A, and then put ip
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B midway with half unit, in the same order as X, i.e. also in
the reversed order to that in A, We get Fig. 28.
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The geometrical fact that for collinear points
twice distance B =duistance A +distance X
(all these distances being measured from the bottom
ends of the scales), now becomes
2 (3 —1 log graduation B)

=log graduation A+ (1 —log graduation X),
so that

log graduation X =log graduation A +log graduation B,
2.e. X=A4AB, or B=X/4A, or A=X/B.
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As in the use of the slide rule, so in our nomograms,
we can operate with numbers of any size. (We can
consider the factors in a multiplication or the dividend
and divisor in a division as all being positive.) Thus
to multiply 18 x 62, we use graduations 1-3 and 6-2
in A, B. The same graduations will be used for
1-83 x-62, or 130 X620, or -0013 x 6200, or -013 x-062,
or any other product in which the factors consist
of these significant numbers 13 and 62. To divide 13
by 62 or any other factors having these significant
numbers we use 1-3 and 6:2 in X and B (or X and
A). In each case the position of the decimal point
is decided by a rough check.

31. Generalised Multiplication and Division.

We can at once proceed to consider the general case
of any number of multiplications and divisions of
numbers raised to any given powers. Thus, suppose
we have to work out

X =8A4A'B"C"... |F*G"... ,
where I, m, n, ..., p, g, ... are positive (including
fractional) given indices and 4, B, C, ..., F, @&, . ..
are quantities whose values are at our disposal, whilst
S is a constant factor. By taking logarithms, we get
log X=Illog A+mlog B+nlog C ...
—plog F—qlogG...+log S.
Let us write
log A=a, log B=b, ..., log S=s, log X==z.

Then the expression becomes

x=la+mb+nc...—pf—qg...+s.
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Thus we have reduced the operation to one of addition
and subtraction of a number of terms which are in
fact the logarithms of the numbers we have to operate
with. If then, we use scales in which the graduations
give the values la, mb, etc., we have merely to make a
nomogram for addition and subtraction. Now con-
vert these scales Into logarithmic scales, 7.e. the
graduation a is marked not ¢ but 4, the graduation
b 1s marked B, and so on, and we have the nomogram
for X in terms of 4, B, C, etc. (If S is less than 1,
s is negative.) Hence we have

Rule V. To construct a nomogram for
X =SAlB®mc®, . /FPGY...
first construct a preliminary nomogram for
x=a+b+tc...—f—g....

Decide upon the length of a 0 to 1 inberval for each scale
according to the instructions given in Rule IIL, Chap. II, § 26,
for the nomogram

la+mb-+nc ... —pf—qg ... 45,

where 8 is log S, giving the zero of one of the scales so as to
take account of s. Then convert each 0 to 1 interval into a
1 to 10 logarithmic scale, and use the resulting nomogram as
giving X in terms of A, B, C ... .

We shall apply the method of this Chapter to some
examples.

32, Nomogram for X —=—ABRB2
We first make a preliminary nomogram for
a-+b,
i.e. we use the alternative nomogram for addition.
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‘We convert this into a nomogram for

a-+-2b,
by doubling the b unit in the nomogram first obtained.
‘We then convert each 0 to 1 interval into a 1 to 10

rogarithmic scale. We do not put in zeros after the
1 1 1

9
8
15 1.5 7
% o
2 2 5
4
3 3
3
9
5 5 2
6 8
= 7 1-&
8 8
9 i 9
1 1
X A 1

Fiac 29

significant figure 1 in the end graduations : as already
explained the exact meaning of the numerical interval
represented by a 1 to 10 logarithmic interval can be
considered as containing a power of 10, which is at
our choice (Fig. 29). Thus

25 x 3-3%2 =272,
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33. Nomogram for R =0 001258V (Resistance to a Parachute).

This formula represents the resistance in pounds

exerted on a parachute of area S square feet, moving
1

1 1 8
7
18 15
5
2 2 %4
23
3 3 I
3 =4 2
=+
5 5 s
8 Ee
7 <7
: L i,
) ée
1 I
R v
Fie 30

with velocity V feet per second through ordinary air
(Aviation Pocket Book, 1918, p. 48). Writing it as

R =8517/800,
we first make a nomogram for
s+v,
where s is log S, v 1s log V, using the alternative



56 NOMOGRAMS FOR

nomogram for addition. We then double the unit
of v. Since log s345=3094,

we take the zero for s to begin at the point -094 on
the s scale. We then convert into logarithmic

scales (Fig. 30).

34. Nomogram for X=ARBC.
We simply take the nomogram for
r=a-+b-+c,
given in Fig. 20, and convert each O to 1 interval into
a 1 to 10 logarithmic scale (Fig. 31).
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85. Nomogram for R =00194WSV?2 (Air Pressure on a
Plate).

In the introduction we mentioned the formula for
the pressure R in pounds on a plate of area S square

1 1 1
) g
8 15 8
7 2 7
6 3 ]
5 4 I 5
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5 Reference Line
-t

1
R

Fic 32
feet, past which air, weighing W pounds per cubic
foot, is moving normally with a relative velocity of ¥
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feet per second. The nomogram is given in Fig. 3.
‘We can now show how the nomogram for this formula
is constructed.

The preliminary nomogram is obtained by con-
sidering the product of three quantities, ¢.e. we start
off with r=w-+8-10,
using Fig. 20. We double the unit of scale ». We
have log 0-0194 =2-288,

so that we put the zero of the r scale, at the point
—0-288. We then convert into logarithmic scales.
(Fig. 32, which is the same as Fig. 3.)

In the practical use of this nomogram we must
remember that W is really a small quantity, its value
for air near the earth’s surface being about 0-081.
Thus, it may be well to say that W is graduated in
hundredths of a pound per cubic foot and the decimal
point in the answer has to be adjusted to get the
correct result.

36. Nomogram for W =675BD?/L. (Breaking Load of Ash
Beam).

The breaking load W (in pounds) for a beam of ash
of length L feet, and rectangular cross section of sides
B inches (breadth) and D inches (depth), which is
supported at the ends and loaded at its centre, is given
by the above formula. To construct a nomogram
we first consider the prelimimary nomogram

w=b+d—I1
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by means of the method of Fig. 22. We double the
unit of d. We then find
log 675=2-83,

1
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9 < 9
1 ~ 1 1
L B/L D B
Fic 33

and we make the w scale have its zero at the point
0-17. Now we convert into logarithmic scales

(Fig. 33).

37. Nomogram for C=w/nd? (Ballistic Constant)
This nomogram is given in Fig. 34, and its analysis
is left as an exercise to the reader.
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The quantity C is an important number used in
gunnery, w is the weight of a projectile in lbs., d its
diameter in inches, and % is a coefficient of reduction.
1
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38. Nomogram for A=GDV2 (Wing Area of Aeroplane).

If the weight of an aeroplane is W pounds and it
i1s designed to fly with velocity ¥V miles an hour
horizontally in air weighing D pounds per cubic foot,
then the area of wing surface required is 4 square feet,
given by the above formula in which C is the ‘¢ lift-
coefficient > of the type of wing used, at the given
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angle of incidence (or attack).

nomogram is for

which we construct according to rule IIT.

N0 -

[+ ]

O Reference Line 11

w—c—d—uv,

N ® O =

A O ONOO~

=1

+15

.'::..2

| 1
HH
Hh @

NETE TU LY I W W POTI PR EINI S )
¢ 1 H-HHHH

[WARE PN W IS FTYT .
L) L) LS (AR

O

Fia 35

The preliminary

0O Reference Line 1

The unit
1
g
8
7

8

5

4
3
15

v
A

of the v scale is doubled and we graduate provisionally.

Also, since

log 32 =1-505,

we push up the zero of w to be at the point 1-505
We then convert the
0 to 1 intervals into 1 to 10 logarithmic scales

as provisionally graduated.

(Fig. 35).
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39, Nomogram for M =270
a Beam).
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NOMOGRAMS FOR

(Maximum Deflexion of

If a uniform beam of weight W pounds is supported
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horizontally at its ends, L being its length in feet, B,
D the horizontal and vertical dimensions of its cross
section in inches, and % the coefficient of elasticity in
pounds per square inch, then the greatest deflexion
M (which is at the middle point) is given by the above
formula, in inches. The same formula holds for W
and E both in tons (or any other unit).

The nomogram is given in Fig. 36, and the analysis
of its construction is left as an exercise to the student.

Exampres III.

1. Draw a logarithmic scale with a 25 em. unit and put in all
the useful subdivisions.
Do the same with a 15 cm. unit.

2. Draw a logarithmic scale with an 8 em. unit.
3. Construct nomograms for

(i) X=A4%B2; (i) X=AB*; (i) X=4/B%;

(iv) X=4%B; (v) X=43B; (vi) X=4/B*.
4. Construct nomograms for
(i) X=342/B3; (L) 4X =TA4}B%;
(i) X =34-1B-2; (iv) s=}gt2;
(v) h=2v*[2g; (vi} E=5;WV?;
(vn) V=ga2/z.; (vui) V=4%wpad/r;
. RV
= 25722 - =t .
(ix) F=4ma?s[1%; (x) B P 550 °
., _ 33000 xHP. T ~\/l
(=) V=" (xii) t=2= .

5. Construct a nomogram for d=2-88 \“/ H;‘l, where d is the

diameter of a shaft in inches, i . 1s the horse power transmitted,
and N is the number of revolutions per minute.

6. If W is the weight of a body 1n lbs, 7 1ts distance from an
axis of rotation in feet, N the number of revolutions per minute,
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then the cenfrifugal force 1n lbs. is 0-000343WrN2 Construct a
nomogram for this.

7. The radius B 1n feet of a metallic sphere weighing W 1bs.,
made of specific gravity p, is given by 3=pR®*=W/62% Con-
struct a nomogram for R in terms of p and W.

8. The time 1n seconds of oscillation of a pendulum is 21:-\/ 72%2

where % 15 the radius of gyration, and 4 is the distance of the centre
of gravity from the axis of rotation Construct a nomogram
using centimetres for %, k, g. (Take g=0981 cm.fsec)
3
9. Construct a nomogram for T2=§;—a—.

10. Consfruct & nomogram for 3WND?/1000d%.



CHAPTER 1V

NOMOGRAMS WITH TWO PARALLEL SCALES

QUADRATIC EQUATIONS, ETC

40. The Quadratic Equation.

It is a very easy matter to construct a nomogram

for the type of quadratic equation

z? +ax4b=0,
¥
F.] a+bd
a-""‘b
y=
£, //
1 x
p—
Fiec 37

for all values of @ and b giving real solutions.

we plot the parabola
y=—x
B.N. 65

For if
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and the straight line
y=ax-+Db,

it is clear that the x coordinate of a point of inter-
section of the parabola and the line #s a solution of
our equation. We only need some easy mode of
drawing the line y=ax+0b for all values of a, b, since
the parabola can be drawn once for all.

To obtain the line we note that

when =0, y=b,

and when z=1, y=a-+b.
Thus, we take the point b on the y axis, and the point
a+b on the line z=1, 7.e. parallel to and at unit
distance from the y axis (Fig. 37).

41. Symmetrical Nomogram.

The nomogram in § 40 is lacking in symmetry. To
restore the symmetry we note that

when z=-—1, y=b—a=—(a—>b).

Hence we take two parallel lines at distance two «
units apart, and graduate them uniformly in opposite
directions with some convenient y unit (which may
be different from the one already used, Fig. 38). We
then plot the parabola y= —2® and graduate it so
that at any point is given the x coordinate (in terms
of the = unit). Then if we take a point a+b on one
scale and @ —b on the other, the join cuts the parabola
at a polnt whose graduation is a solution of the
quadratic equation. In Fig. 38 the z unit is 10 times
the y unit.

The figure is drawn so as to give solutions between
+2 and —2.
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42. Use of the Nomogram.

In practice only one root need be found. This
depends upon the fact that if z,, x, are the two
solutions of the equation

22 +ax+b=0,
then T, +Ty=—a, x,%,=Db.
Thus if we have found z, from the nomogram, =z, is
given as Xy = — @ —1,.
A good check is then provided by the remaining
relation x,x, =0b.
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Thus, if one of the solutions of the quadratic
equation lies between +2 and —2, the equation can
be solved completely. FE.g. take

2 +42+2 =0,

so that a=4, 6=2. We take the points 6 on the
a-+b scale and 2 on the a —b scale. The join cuts the
parabola at the point whose  coordinate, and there-
fore graduation, is —0-585. Hence

x, = —0-585,

Ty =—440585=—3:415,
and it is found that (—0-585) X (—3-415) is nearly 2.

It may happen, however, that the numbers « +b,
a—>b, are too big to be included in the nomogram,
as e.g. in 2? +122+10 =0,
in which ¢=12, b=10. We can then reduce ¢ and b
by means of the following device.

Put =2,
and the equation becomes

42'® +247' 110 =0,

.. x'2+6x"+2-5=0,
in which a =6, b=2-5. We then find
" = —0-45,
so that T, =—0-9,
and therefore To=—124+09=—11"-1.

The product z,z, is sufficiently close to 10.
Again, if we have the equation
2% —29% + 53 =0,
we pub =102,
so that z'?—2-92' +0-53 =0,
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giving a=—2-9, b=0-53. We get from the nomo-

gram z,’ =0-195,
so that z, =1-95,
and therefore T, =27-05.

The product check is readily verified.

In any such case one very soon finds a convenient
change (or transformation) from x into a'.

43. Cases of Failure.

It may happen that the line joining the points
a-+b, a—b does not cut the piece of the parabola
given in the nomogram. Thus,

2 4+2x+4=0
gives a+b=6, a —b=—2, and the join does not cut
the curve. This may be the consequence of one of
two causes. FKither the line would never cut the
parabola at all even if the parabola were plotted to
infinity. Or the line does cut the parabola but so
far away that neither of the two intersections is on
the nomogram as actually drawn. In the former case
the quadratic equation given has no real solution.
In the latter case real solutions do exist, and they
should be found. It is often possible to judge from
the look of the diagram whether we have the first
or the second case. Thus, a+b=6, 6 —b=—2 gives
a line that evidently does not cut the parabola at all.
But the equation
2> +4 6x4+5=0
gives a+b=96, a —b=—04, and the line through
these points may or may not cut the parabola—the
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diagram is mnot convincing either way. To make
quite sure in such a case, we again apply the device
already given. Thus, put

x =27,
we get z'?4+2-3rx+1-25 =0,
so that a+b=38-55, a—b=1-05. We find

x, = —0-84,
so that Z;=—1-68, xy=—46—(—168)=—2-92,
the product being sufficiently close to 5.

44. Cubic Equations

The cubic equation is one involving the third power
of the unknown : such an equation as

x® +3x2 —2x 45 =0,

or 2x® +a* —1 =0,
or x® —4x-+7=0,
is a cubic equation in =. It can be easily proved that
by means of a simple device, such an equation can
be made to contain only three terms, ¢.e. the cubic
term and two of the other three terms. In particular,
1t is useful to make the equation contain only the
cubic term, the first order term (2 e. ) and the term
with no z in it: in other words, the square term
(2?) can be eliminated. The equation is then said to
be of Cardan’s form.

Thus, take the equation

z* +3x® —2x+5=0.
Put r+1=z";
the equation is
(' —1)2 +3(2" —1)2—2(z' —1) +5=0,
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t.e. after a little algebra,
2% — 53" +9 =0,
in which the square term (z'2) is missing.
The equation 2% +a?—1=0,
can be written o +42% — 4 =0.

Put r+E=a,
and we get (' —3})P°+i(z'—3)2—3=0
1.€. B — 5 — P =

The last equation above is a.h'eady of the required
form.

To remove the square term when it exists, we first
make the coefficient of z® unity. Thus,if the equation is
ax® +ba? +cx+d =0,

we divide by a and get
23 _!_? 2242 g _3_‘11 —
a a” a
We then put THA=2,
so that we get by substitution

y b, . C, d_
(2" —=AP 4 (@' =AP 4 (" —A) - =0,

b

ie. x4 (2 —3x) ' (-2 —2x 4 3,\2) '

+(§—A§+>\22—A3)=0.

Hence the term "2 disappears if we have

15
M3
16,
We thus write 45 =T,
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and the equation becomes

',leb,lbz ,1b d
(v—33) +2(®—3q +2(# —35) ta="

and it is at once seen that the equation in &’ does nob
contain the square term.

This property of the cubic equation is particularly
valuable in the construction of a nomogram, because

o

1

2

3

4

5

6 r

7 :
s
-] £-9
10 _'E.xo
a-b a+d

Fra. 89,

a method exactly similar to that of § 40 can be applied
to the equation 2 1+ gz +b=0.

We plot y=—2°;
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the line y=ax+b cuts this curve at points whose
x coordinates are the solutions of the cubic. It is
clear that the line y=az+b can be obtained for
different values of a, b in exactly the same way as in
the case of the quadratic equation. The construction
of the nomogram thus becomes merely the substi-
tution of the curve y= —a?® (cubical parabola) for the
curve y=—a? in Fig. 38.

This has been done in Fig. 39, which gives solutions
ranging between +2 and —2. Cases in which a+b
or ¢ —b is too big, or in which the join does not cut
the curve as given in the nomogram, can be dealt with
exactly as explained for the quadratic.

45. Extension.

But an equation of a degree higher than the third
cannot always be treated in such a way. The reason
is that such an equation cannot always be made to
consist of only three terms. It may by accident be
of this form, or be reducible to this form, but in general
this will not be the case.

Thus, if in the equation

T + 477 + 62% + Tz + 5 =0,
we write rz+1=x,
we get 't 432" +1 =0.
But the equation

xt +42° +42° +Tx+5=0,
cannot be reduced quite so much. We can remove
the term in z® by using the same device, but the term
in 22 remains, as the student will readily verify.
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The same holds of equations of the fifth and higher
degrees : in each case we can remove the term after
the highest, but we must not expect to be able to do
more in general.

But it may happen that an equation of the fourth
degree takes the form

2t +ax+b=0,
or an equation of the fifth degree takes the form
z® +azx+b=0,
or an equation of the nth degree takes the form
" +ar+b=0.
In such a case we can once more use the method
of § 40.
If we have an equation
z* +ax+b=0,
we plot y=—x",

instead of y=—a® in Fig. 38. It is not necessary

for n to be an integer and positive; 1t can be any
number.
Finally, if we have an equation

x* +ax™ +b=0,

1
we put r=(z")",
so that zr =(z')™,
and we get ()" +ax’ +b=0.

We solve this by means of a nomogram consisting of

Fig 38, with the curve y= -—(x’)'% substituted for
y=—2%  Then using a+0b, a—b as for the quadratic,
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we find a value or values of &’ satisfying the derived

equation. The corresponding values of z are then
readily found (see Ch. VII. § 69).
Thus the equation

2B +ax’ +b=0
is solved by means of putting
z—=(z)",
so that (:c’)g"L +ax’ +b=0,

the curve in the nomogram being
y=—()".

46. The nomograms just obtained are, however, not
convenient for practical use because of the necessity
of calculating a-+b, a—b. It is desirable to con-
struct a nomogram in which the numbers a, b are
used directly, i.e. iIn which we take a point @ on one
scale, and a point b on another scale, and let the join
cut a curve graduated in such a way as to give the
required solution. This is the case in the nomograms
of the first three chapters.

47. D’Ocagne’s Nomogram for x2-fax-b=0.

Before proceeding to a discussion of the method of
constructing these more convenient nomograms, we
shall show that such are possible by giving the nomo-
gram for the quadratic equation made by d Ocagne.
We shall show that d’Ocagne’s method is correct :
later on, in ChapterV., we shall show how this and other
nomograms can be discovered.



76 WITH TWO PARALLEL SCALES

Take a pair of axes O, Oy at right angles to one
another and plot the curve (hyperbola),

g
i1
between the values £=—1 and £=0. In Fig. 40,
we have made the £ unit ten times the 5 unit. Draw

’7=

-
Q
¥y

B N
&
N

|

PFic 40.

the line £= -1, 7.e. parallel to the » axis and at
distance one £ unit to theleft. This line is an asymp-
tote of the hyperbola as plotted.
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If we join the origin to any point on the asymptote
at distance z (7 units) below the £ axis, then this line
cuts the hyperbola at a point whose & » coordinates
obey the relation

§=m.
1 _ &
But £ E11
for all points on the hyperbola Hence we have
- ~ £
n=fx and = EXT

Let us call this point the z point on the hyperbola.
Now let any line through this » point cut the 5 axis
at the point b, and the asymptote at the point a, so
that b is the number of » units in the distance of the
first point from the origin, and a is the number of
» units in the distance of the second point from the
£ axis. (In Fig 40 both are negative, the first is
= —2-8, the second is a=—4-7.) The equation of

this line is n=b-(b—a)t.

But the line also passes through the z point on the
hyperbola. TFurther

n==E&x
as already proved We therefore get
Ex=b4(b—a)&.
The equation = —E,—_%_I,
. x
gives €= —'E—_T_—]To
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Hence we have for « the equation

z? z
RS I e b

which reduces to 22 +axz-+b=0.

Rule VI. To counstruct a nomogram for the equation
x* +ax b =0,
take a pair of perpendicular axes Of, O#n ; plot the hyperhola

Ez
E+1

between £= —1 and £=0. Draw the asymptote &= —1.
Graduate the » axis in » units and call it the b scale, graduate
the asymptote with the same unit and call it the « scale.
Join the origin successively to the negative graduations on the
a scale and where any join cuts the hyperbola, put down the
corresponding positive number: in this way put in all the
useful graduations on the hyperbola Then a line joining
the point a on the a scale to the point b on the b scale cuts
the curve at the graduation a;, which is a solution of the quad-
ratic equation.

The nomogram as drawn in Fig. 41 gives only
positive solutions ranging from 0 to 10. In fact, we
need to consider only positive solutions For if one
of the solutions of the quadratic is negative, we can
find the positive solution z,, and then find z,= —a —x,
as before (§42). If both solutions are negative, we
put

77:':

= —J)’,
and the equation becomes
x'?2 —axr’ +b=0,

in which both solutions are positive. Having solved
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this equation we merely reverse the signs to get the
solutions of the original equation.

For solutions above 10 we can use the method
given in §42.

48. Quadratic Equation with given Ranges of the Co-

efficients.

The nomogram as given in Fig. 41 is suitable for
cases in which the values of a, b are in no way circum-
scribed. In practical cases these coefficients will lie
between, definite limits, and it is desirable to construct
the nomogram in such a way as to take advantage
of this circumstance. We shall illustrate the method
by considering a case where we know a prior: that in

the equation 2? +ax+b=0,

a is positive and never greater than 5, b negative and
never less than —5.

Let us use a pair of axes Of, Oy inclined to one
another. The general theory of ‘‘ oblique axes ™ is
of some difficulty. But here we shall only use them
in a way that can be readily understood by anybody
familiar with graphs and easy geometry of similar
figures. We can plot a curve on °‘rhombussed ™
paper (Fig. 42) just as well as on squared paper. The
only thing we need to find out is the equation of a
straight line. It is at once seen that if BP is a line
cutting the » axis at B, and PN, BN are parallel to
the axes, then NP/BN

is the same for all points on the straight line, say m.
Hence NP =m - BN =mé,
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where £ is the abscissa of P, and
n=0B+ NP =m§+b,

where 7 is the ordinate of P, and b is the distance OB,

the intercept on the » axis. If the line cuts £=—1

S S S LYY oy g
/S S S S S SSSS
S S SSS S S S S S L

/
/////////////

// // // // // // // // // / // // /Z

at 4, then the ordinate of the point of intersection
is a=--m+b. Thus a line which cuts the » axis
and the line £=—1 at oblique distances a, b from
the £ axis has the equation

7=b +(b ——CZ)E,
exactly as in the case of rectangular coordinates.
If then we plot the curve

N=m
E+T

and carry out all the process of the last article. we
shall get once again a nomogram for the quadratic
equation.

Now let the angle between the axes be the angle

B.N. F
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whose tangent is 2, and let the £ unit be 5.5 times
the 7 unit. It will be found that not only is the part
of the b scale between 0 and —5 equal and parallel
to the part of the a scale between 0 and +5, but that
these two lengths are opposite sides of a rectangle,
so that the nomogram can be conveniently constructed

as 1n Fig. 43.
o]

5 o}
a4 -1
05
3 -2
2 1 -3
15
1 -4
2
o} -5
a x &
Fic 48

The nomogram thus made is more suitable for the
given ranges of a, b than the general nomogram in
Fig. 41. It has the additional great advantage that
owing to the prescribed ranges the nomogram can be
made bigger and therefore more accurate.

49. Automatic Method

Let us consider the case where @ ranges up to 41400,
and b down to —2500. To get the useful parts of
the a, b scales in convenient relative positions we take
the angle between the axes to be 45°, and choose the
£ unit to be 2500 times the » unit. Since, however,
rhombussed paper is not a marketable article (especi-
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ally as the angle between the axes useful in one case
may be useless in another), it is desirable to be
able to plot the curve in the nomogram without the
use of oblique coordinates. Having once convinced
ourselves that the nomogram can be constructed,
we can evidently choose any method that gives us
the result in the shortest time and with the least
labour. Such a method is now to be given in detail
for the case we are discussing.

In Fig. 44 we have the a, b scales placed in such a
way that the join of their zeros cuts them at 45°.
The a scale is graduated from O to 1400, the b scale
from 0 to —2500, the unit being such that the distance
between the zeros is 2500. (Of course any other
distance could be used, but the one chosen gives a
convenient figure.) To plot and graduate the x curve
we can proceed as follows :

We know that any « graduation is a solution of the
quadratic equation z?-+ax-+b=0, whose coefficients
a, b are the graduations at the points where any line
through the point « cuts the a, b scales. If then we
find fwo lines whose a, b 1ntercepts give equations each
of which has a certain solution z, the intersection of
these lines must be the point x on the curve looked
for. We thus get both a point on the curve and the
corresponding x graduation.

Since b varies between 0 and —2500, 1t follows that
the useful part of the required curve must lie between
x=0, x=50. Let us then find the point on the curve
for any value of z between these limits, say, r=>5

We need fwo equations each of which has a solution
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5, with a, b lying within the given limits. An obvious
one is 22 —25=0. If we try to draw this line we see
-0

Z+-100
*-200
2 500
3‘--400
T
F-800
o5 -E:--GOO
xr
=-700
Z-800
-
1 £ sc0
&--1000
15 &-1100
2 F-1200
E.-1300
F

£--1400

IV TN Y
Al Tt

E.-1500

PUVL PV

--1600

+--1700

e

E-1800
E 1900

==-2000

—+=-2100
I

—=-2200

2300
T

Z--2400

£-2500
o
Fic. 44

that it is very nearly coincident with the line of zeros.

To get another line as distinct as possible we use
(z—5)(x+500) =0,

1.€. a=495, b=—2500.

Similarly for any other value of z.
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In the particular case under discussion it happens
that the values =0 to m=about 10 give points
practically on the line of zeros. This is., of course, an
accident—but a useful accident. For it enables us
to put in the graduations between 0 and 10 by just
finding one additional line for any value of xz—the
line of zeros giving the required intersection point :
it 1s, in fact, very approximately the z curve.
Hig. 44 has been constructed in this way.

When z is considerably greater than 10, the curve
deviates from the line of zeros, but never very much.
In any case we do not really need these graduations
as already explained (§ 42).

50. Quadratics with Widely Different Ranges of the Co-
efficients.

If the ranges of @, b are widely different it is clearly
inconvenient to use the same unit in both the a, b
scales. But by means of the automatic method
introduced in the last article we can at once make
a nomogram suitable for the given ranges.

Suppose then that a is always positive and less
than 100, b negative and numerically less than 8000.

The equation 22 Lar+b=0,
can be written x'2+a'x’ +6"=0,

4 14 4 b
where z=100z", @ =100 b ~10,000°

and the equation in x’ has coefficients with more or
less equal ranges. If then we make a nomogram
for »* and multiply the x” graduations by 100, the a’
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by 100, and the " by 10,000, we shall have the nomo-
gram for the given ranges.

Since a nomogram exists, we can proceed to con-
struct it straightforwardly by the method of the last
article.

In Fig. 45 we have made the @ unit 100 times the
b unit, the line of zeros being at 80° with the a, b scales,

100

80

8o
1000

70
2000

60
-3000

50
-4000

40
-5000

30
-6000

20
-7000

10
-8000

° a

Fic 45

and the distance between the zeros 100 ¢ units, so
that the a, 0 scales form a conveniently shaped
quadrilateral. The solution z is taken to range
between 0 and 90. For an z graduation equal to 40,
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typical of graduations between 20 and 90, we use
two lines given by

2 —1600=0, «?-460x—4000=0.

For graduations between 0 and 20 the former type
of equation is not convenient. As a matter of fact
this part of the curve lies near the line of zeros and
can be readily drawn by freehand as a continuation
of the x curve from 90 to 20. It can then be graduated
by means of the second type of equation.

It happens that the z curve is graduated in what we
may call an approximately regular manner. The
subdivisions can thus be put in with great ease.

The reader will now be able to construct nomograms
for quadratic equations for any given ranges of the
coefficients.

Exavmrrrs IV.

1. Construct nomograms for the equations :

(1) 22—ax +b=0, () z*+ax?+b=0;
(i) az?® +bx +1=0; (v) x2=az +b;
) aw+é=1; (vi) ¥ + % =b.

] z=

Note —In each case find a transformation which puts the
equation in the form 22 +az +b=0, and use the method of § 41.

2. Construct a nomogram for z2+azr+b=0, as 1n §41, and
use 1t to solve the following equations .

(i) 22+2x +3=0; () 3x2—z—-1=0;

() —3224+2+1=0; (v) %-,-x—_:'[;
.z 3

(v) 22 +1Tx - 42=0; (v1) 160" 10 +1=0.
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8. Construct nomograms for :

@) "’2+g=b§ (i) s*=ax +b; (i) z*=a +bx;

@iv) :vi‘=g+b; (v) z¥=a +bx; (vi) x§=g+b.
4. With a nomogram for 3+ ax+b=0, solve the equations :
(1) -3z +2=0; (i) z® +622~52—-T=0;
(in) o®~422+1=0; (iv) «®—52%—~ 11z +74=0.

5. Construct nomograms for the equations i question 1, using
the method of § 47.
6. Use a nomogram for 22+ ax+b=0, according to § 47, to
solve the equations in question 2.
7. Construct a nomogram for z? + ax + =0, in which a can have
values between O and 100 and b between O and — 100.
8. Shew that the nomogram in question 7 can be used for
both ranges O to — 100 by putting x= —z’.
9. Construct nomograms for z®+ax +b=0, for the following
ranges of a, b respectively :
(i) 0to10, Oto —1000, (1) Oto 1000, Oto —10;
(1) O to 50, 1000 to — 10,000 ;
(iv) O to 50, 1000 to 10,000
10. In direct fire the distance y that the shell has risen 1n time ¢
is given by y=1gt (7 —1t), where 7'1s the whole time of fight for a
range on a horizontal plane. Shew how to use the quadratic
equation nomogram to find y when ¢ and 7" are given Takeeg.
i) T'=10, t=5; (@{) T'=17%, t=38-2; () T=27,t=25
11. In experiments on coal-gas combustion, the flame
temperature 1s given by the equation #2—at+b5=0 where a, b
range between 4,000 to 12,000, 8,000,000 to 25,000,000
respectively. Construct a suitable nomogram
12. Construct a nomogram for x®+ ax? + b =0, using graduation
on two paralle: scales.



CHAPTER V

GENERAL THEORY OF NOMOGRAMS WITH TWO
PARALLEL SCALES. PARALLEL COORDINATES

51. In Chapter IV. we have seen that nomograms
can be made for quadratic and other equations in
which the coefficients are represented by points
on uniformly graduated parallel scales. We have also
seen that the mathematical part of the work can be
greatly diminished if we assume that a nomogram
exists. We shall return in a later chapter (Chapter
VIIL.) to this automatic method; in the present
chapter we shall consider the theory of such nomo-
grams in general.

Distances a, b cut off on parallel uniform scales are
called parallel coordinates.

52. Nomograms with Parallel Coordinates.

We shall then proceed to shew how to find the
equation of the x scale 1n a nomogram with parallel
coordinates, and how to graduate 1t

Choose rectangular axes Of, Oy (Fig. 46), so that
On is the b scale and O is the zero of the b scale. Let
the @ scale be at a distance of one £ unit to the left

(negative side) of the b scale. Consider any point P
89
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whose coordinates are (£, #). We shall find what
relation there must be between the lengths a, b cut
off on the a, b scales for all lines that pass through P.

n

s ] P(&J’])
/

Fic 48

Take the line through P given by a,b. The equation

of this line is
Y=b+(0—a)X,

where (X, Y) are the coordinates of any point on it.
Since P is on this line this equation also holds for (&, »)
the coordinates of P itself. This is true for «ll lines
through P. Hence the a, b intercepts for all lines
through P satisfy the single equation

ﬂ=b+(b—&)£,

&
~a~“~j1 b+4+1=0.

Yl

2.8, 3
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l!Let then the equation, given to be solved, be
written A(@)a +B(z)b+1 =0,
so that 4(x) and B(x) are known functions of z. If

there is to be a definite graduation z at P it follows
that the two equations

%a—g—j—l b+1=0
and A(z)a +B(x)b+1 =0,

are both true for any number of straight lines through
P. This means that the equations are really the
same, so that we must have

A@=E, BEw)=-2H,
. . A(x) _ 1
ve €= TA@) +B@y 7T T A@)+B@)

If we eliminate z we obtain an equation between
&, 7, telling us what the relation between the co-
ordinates of P must be if P is to be a graduation in
the nomogram, 7.e. a point on the z curve. This
relation defines the x curve, which can be plotted.
The graduation of the curve is effected by finding
from the above equations what is the value z for any
point (&, #). In practice, it is often simpler to
consider z as a parameter in terms of which &, » are
given, this parameter being in fact the graduation.

53 Bx.
Let us go through this reasoning with a specific
instance. Take d'Ocagne’s nomogram for the quad-

ratic equation 2 +qz+b=0.
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If we write this equation in the form

1 1

59 a-+ ﬁ b —]—1 =G,

we get for the coordinates (£, n) of any point P on
the x curve of the nomogram :

1 & 1 _ &+1

x n 7
Hence the equation of the  curve is
(E) &+ + 1
: _ %”
i.e. = —EiT

This is actually the equation used above (§47,
Fig. 40). The x graduation at any point is given by

3

xXr= E—I—l,

el

as used in §47.

54. The Parabolic Nomogram.

In § 52 we have made the b scale coincide with the
y axis and the a scale along the line £=—1. We are
of course at liberty to choose any two parallel lines
for these scales. Let us then make the a scale along
the line £=—1 and the b scale along the line £=+1.

For all lines through any given x graduation the a,
b intercepts must satisfy the given equation

A(x)a+B(x)b+1=0.
But the equation of any line through this point,
coordinates (&, »), must also be
b+a b—a
=2 T2 &
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£—1 E+1
2, T g,

Hence the coordinates (£, ») of the point graduated
z on the z curve are given by

A@)=tt, Bay=-1L
If now we have the quadratic equation
?+a’x+b =
and use the values @, b defined by
a=b—a’', b=b'+a,

7.e. b-+1=0.

we obtain x? —l—b 4 +Zj —12—a,=0’
so that the equation can be written
11— 1+x
o0 a-+- on b+1=0.
1—x 1-+a

Thus we have  A(z) =55 B(x) =5z

l—z £—1 14z E+1
22 27 ° 222 27
This at once yields z=§ »=—a22=—-§&.

Thus the z curve is the parabola »=—£, and the
z graduation at any point on this parabola is the
corresponding abscissa £ This is the nomogram
given above, Ch. IV., § 41, Fig. 38.

and we get

55 The Circular Nomogram

A particularly interesting nomogram for the quad-
ratic equation can be obtamned, in which the # curve
is a circle.
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Let the @, b scales be along the axis of », and the
line £= 41, respectively. Any line through the
point (&, #) cuts off from the @, b scales lengths which
satisfy the equation

n=a-+ (b '—a')Es
i.e. g—qla-—gb +1 =0.

7 ”

If the quadratic equation

22 +a'x+b' =0

1s written in the form
z b
Z=ate=%
SO tha:t Q= — ];/': = —-b—i
a a

are the definitions of @, b in terms of a’, b’, the equation
for  can be written

—az—241—0.
x
This is the same equation as

] 7

. —1 7
if T = ‘*-—n—, =z>
so that we get for the z curve the equation
n_ &1
& n’
7 e. £+ —-E=0,
2

or (E—7 7 =@
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The z curve is therefore the circle whose centre is
the point (%, 0) and whose radius is 4. The gradu-
ations are at once given by z=y/£.

In Fig. 47 the circle is shewn drawn. To solve the

equation 2 L@’z b’ =0
3
Vi
T
p P
\P'
o N fo 3
o
a@

Fic 47.

take the distance — C% along the a scale from its point

4

of contact with the circle, and the distance —(Z—;; along

the b scale from its point of contact with the circle.
The join cuts the circle at, say, P, whose z graduation
is n/¥, 7.e. the tangent of the angle POE.

This interesting case can be interpreted geometri-
cally in a very simple manner. Let P (Fig. 47) be a
point on the circle. Join OP and produce it till 1t
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meets the b scale in P’ ; drop PN perpendicular to
the diameter OO’. Then we have £=ON, 5=NP,
so that z=tan POO’.

But OO’ is unit distance : hence z is numerically
equal to the distance O'P’. Thus the circle 1is
readily graduated by joining O to the graduations
of the uniform b scale, and letting the joins cut the
circle.

Also let the line through the points a, b cut the
£ axis at the point P”. It is clear that

O'P"/P'O=—bla=—Vb".
Thus the 5 axis is graduated reciprocally and negatively

(a:——— — C%,), and the & axis is graduated segmentally and

negatively. The former needs no explanation. The
latter should be compared to the segmentary scale (),
described in Ch. I., § 10, Fig. 10. There only internal
divisions are taken, whereas here we graduate both
internally and externally, the internal graduations
being called negative, and the external ones positive,
7.€. & minus sign is added to the ordinary geometrical
convention. It is important to remember that the
7 unit must be equal to the £ unit, 2.e. to the diameter
of the circle.

The line joining a’ on 5 to " on & cuts the circle at
points whose graduations are the roots of the quadratic

equation 2* +a'z+b =0.

In Fig. 48 only half the circle is drawn, since we only
need to find a positive root.
This nomogram (due to Whittaker) 1s remarkable
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because of the ease with which the # curve can be
drawn and graduated. On the other hand the com-

-
S
Kl

i

Fia.
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5 67861
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plication in the graduations on the a’, b’ scales is a

distinct disadvantage. We shall return to it later,
B.N. G
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Ch. VII., § 68, as it is an instance of a nomogram in
which parallel coordinates are no longer used.

56. Cubic Equation.
Let the cubic equation (of Cardan’s form)

22 +axr+b=0
be written in the form

a b

52-4"%—3 +1=0.

Using for a, b scales the lines £=—1, £=0, we have,
if (&, n) are the coordinates of the graduation z, the

relation (§ 52) £ - E+1

2 b+1=0
7 7
g1 E+1_ 1
Hence = P T
§ 3 . E_l_]_ 2
so that (ﬂ) _( - )
giving —EiT
as the equation of the z curve ; the graduations are
iven b 7
g y v \/g
For plotting purposes we use
E=—2 4= =
T i 7T i

The student is advised to plot this curve and to
graduate it ; he will find it convenient to take the
£ unit ten times the » unit.

Here, too, we modify the fundamental nomogram
in accordance with the ranges of @ and b (see Ch. IV.,
§§ 48-50).
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ExamerLEs V.

1. Using parallel coordinates a, b along the line £= —1 and the
line £ =0, construct nomograms for the following equations :

@) a® +bx+1=0; (@) az+2+1-0;
(iii) 2®* —az +b=0; (iv) 2® +a2® +b=0;
(v) a(a:+ >+b :z—-— =1; (vi) 2% +az +b=0.

2. Do the question 1 with parallel coordinates along the lines
§=-% &= +1
8. Try the equation az +g +1=0 with the parallel coordinates
measured along the following pairs of lines :
(1) =0, £{=1; (i) {=%, £=—~4%; (i) §=-1, £=0.
Why is the second the easiest process ?

4. Try the equation z2+axz +b=0 with parallel coordinates

along the lines £ =a, £=B. Deduce that
ax + z?
=i 1= -5

and decide which are the most convenient values of a, 58 to choose,
(T'hey must be unequal, of course.)

5. Carry out the investigation of question 4 for the equation
ax® +bx +1=0.

6. Do the same for the equation axz +2= 1.

7. If you have to construct a nomogram for mz-m——z, where
would you place the a, b scales ?

8. The volume V cubic feet of water in a hemispherical pot of
radius a feet, filling 1t to a depth z feet, is given by ¥V = u-(az’ —;j)-
Construct a nomogram to find z for any values of a, V.

9. The resistance R of a sphere moving through a gasis given by
R=A4U%*+ BU,
where U is the velocity and 4, B depend on the size of the sphere
and on the nature of the gas Construct a nomogram to find
what velocity U will give a definite prescribed resistance B.



CHAPTER VI
NOMOGRAMS WITH TRIGONOMETRICAL FUNCTIONS

57. There being no restriction on the forms of A4(z),
B(z) in the method of the last chapter, we can use
this method for the construction of nomograms for
transcendental equations; as, e.g., equations involv-
ing trigonometrical functions.

58. Nomogram for a tanx-+bsecx-+1=0.

In order to decide on the best positions of the
a, b scales, let us put the a scale on the line £=a, the
b scale on the line £=pB, in the method of the last
chapter. The equation of the line joining the @
graduation to the b graduation is

bh—

’7=B—_% (§—a)+a,
E—Ba_E—ab ., _
ey Byt 10

To make this agree with

t.e.

a tan z+b sec z+1 =0,

E—B
(B—a)y

we make

—tan z, (Egi-%j, = —sec .
100
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We at once get, since sec’z =1 +tan?z, the equation

(§—a) —(£—B)* =(B—a)*,
i.e. 28 =(B —a)7? +(B +a).

05

-1
a

Fia. 49,

To get the simplest result, we therefore use
a+B=0.
This gives 28 =282
Hence we choose B=1, a=-—1,
and the z curve is the parabola &=
The graduations are seen to be given by

o 1-f
BlnSB—l_i_E-
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(See Fig. 49, which is applicable to all really useful
values of @, b.)

59. Nomogram for a’sinx-b’ cos x=c’.
‘Write this in the form

I

b’ tana: b,sec r-+1=0,

and we have the same problem as in § 58, the numbers

r ’

a’ ¢
b’ s bl
Fig. 49.
It is, of course, easy to make a nomogram for

a sin x-+b cos =1,

b

7 for b, in order to

being used on the a, b scales respectively in

’
. &
in which we would use o for a, =
solve the equation

a’ sin £+b" cos x=c'.
If we use the method of § 58, we get

(Bg—f)n —sin @, ———(g::)q —CoS Z.

Hence, since sin?z-cos?zx=1, we get
(E—a)* +(E—B) =(B—a)r,
1.€. 28 —28(a+B)+a®+-B2=(B —a)?y?
The z curve is simplified if we choose once more
a+B=0, .6 a=-—0,
and the x curve becomes



a hyperbola.
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ations are then given by

2

1-9

1/J/2—&
1/ /2+&

tan x=

We might use, e.g., 82=%; the gradu-

60. If the student will plot the z curve in § 59, he
will find that the resulting nomogram is not convenient,

1-8 ==

1.7

1-6

1-5

1-4

13

12

11

Fic 50.

1

09

0-8

0-7

06

05

o4

03

0-2

o1

o

since the z curve is a more or less shallow curve lying
symmetrically between the scales, and this means

rather inaccurate readings.

To remedy this we again

use the idea of oblique axes developed in the case of
This 1s really

the quadratic equation in Ch. IV.
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equivalent to shifting the b scale in one direction along
itself, say upwards, and the a scale in the opposite
direction.

in Fig. 50 we have carried out this idea, and we
have a nomogram very well adapted for values of a
between 1 and 2, and values of b between 0 and 1.

61. Kepler's Equation: nt=¢ —esin cj)

In a very important problem in astronomy, it is
necessary to solve the equation

nt=¢ —e sin ¢,

in which nZ and ¢ are certain angles (in radians), and
e is the eccentricity of the orbit of a planet. To find
¢ nomographically when n¢ and e are given, we have
to construct a nomogram in which the same quantity
¢ occurs algebralcally and trigonometrically. This
does not affect the applicability of the method of
Chapter V. We use the method of § 58 to find the
best positions of the scales.

In practice e will always be between 0 and 1
(actually the useful limits of e are much closer together:
0 and 0-4); whilst nt will go through the values 0
to = (the range = to 27 being obviously obtainable
from the values O to ). Hence the nt range is several
times longer than the e range. We would therefore
find 1t advisable to take the e unit, say 5 times the
nt unit.

Let then a=ni¢, b=>5e¢, so that the equation is

a—}—g sin ¢ =¢.
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We get by the method of § 58 :
E-B 1 _E—a _sing
(B—a)r ¢’ (B—a)r 5¢

0-9

o-8

0-7
180

0-6

150 05

o4
120

nt [
90

30

0-3

0-2

o1

0-%p e}
&
Fia 5L

There is no very obvious indication of most convenient
values of a, B. We therefore use ones giving least
arithmetic ; eg. B=0, a=-—1,

as 1n d’Ocagne’s nomogram for the quadratic equation.

We get E_ 1 &+l _sing
7 ¢ n -— 5¢p -
Hence £+1 = -—Sm,. ¢,

3]
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5
so that E= S G5’
and therefore 7 —_ 5
sin ¢ +5
The graduations are given by the simple relation
¢ = -—',7/ E:

which has an obvious geometrical interpretation.
The nomogram is given in Fig. 51, and the student

should verify it by tracing it on squared paper.

62. Nomogram for Zab sin C.
The nomograms in Ch. III. can be modified so-as

to include problems of products involving trigono-
1 1 1

9 9
15 s a
80 =90 2 7 v e
60 3+ 120
80 F150 4 5 5
s
20 -1-160 6 a 4
7
15 3165 8
i 3 3
5 =175 o .
4 4178 3
84177 a R
2 15 5
3 5
8 21178 )
3 7
8 8
S 9
“ 1 1 1
ad C b Area a

Fia. 52.
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metrical functions. Let us take, as an illustration,
the formula for the area of a triangle in terms of two
sides and the included angle. If we take the nomo-
gram for the product of three quantities (Fig. 31)
and use o instead of 4, b instead of B, and 4 sin C
instead of C, we get the required nomogram for
2ab sin C (Fig. 52).

B—C_b—c co A ]

2 b-e 2
Again, consider the well-known formula for finding

the angles of a triangle in which two sides b, ¢ and the

63. Nomogram for tan

- 10
170
-
-—15 160 z
I P
J- 150 4
=20
1 140 3
I
I 25 130 25
i; 120
T30 o
i o 100 2
+3s 20 19
1 80 18
F40 70 17
Fas 8o 1o
+s0 0
F 55 40 15
80 14
65 S0
70
75 20 13
80
1
85 5 125
90 =
B-C = e

Filae. 53.
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included angle 4 are given. Writing the formula as

b_,
ta.nB_0=c cot é,
2 b 2
1

we see that the quantities b and ¢ only enter in terms
of the ratio b/c. We can assume b > c. If we write

B—-C b—c A
X =tan -—2—, Yzz—_"_—c-, Z =cot -2—,

the nomogram for X=YZ will give the nomogram
required when regraduated. (Fig. 53, which the
student should compare with Fig. 28.)

Exampres VI.
1. Construct nomograms for

() sinz=a+bcosz; (1) secz=a+b tan x ;
() esin2z+bsinz+1=0; (iv) cos2z=asinx+b;
(v) sihz=a +bx; (vi) tan z=a+ bz.

In (v) and (vi) let @ range between *1 and b between =+ 4.

2. Construct nomograms for

@) %s'm B; (1) ﬁ- ; (u1) s tan 5
@iv) r siz g (v) 2wa?(1 —cos a).

3. Construct nomograms for
32m, sina _

v my—m
1 Zt. (n) f= m1+m2 >

0) 55 Tmytmy,
(ii1) f=382 (sin « — 1 cos a).

4. Shew that the nomograms in §§ 58-60 can be derived from
nomograms for quadratic equations.

5. If 1/D represents the thickness of a thread in inches, and n
the number of turns per inch, the angle of twist, 6, is given by
Dfw cot =n. Construct a nomogram in which D ranges from
5 to 200 and @ from 0° to 45°.




CHAPTER VII
NOMOGRAMS WITH INTERSECTING SCALES

64. If we refer back to the circular nomogram for
the quadratic equation, we shall see that in the end it
was found best to graduate the axes of £, 5, 7.e. the
line on which a solution of the quadratic lies is taken
through two points on lines perpendicular to one
another. It is often convenient to use such scales,
or even scales at some other angle with one another.
We shall first investigate the theory and practice of
nomograms with perpendicular scales, and then
proceed to the generalised method.

65. Nomogram for the Optical Formula.
A useful case 1s that of the optical formula

_="'+“3
u v

where f is the focal length of a lens and u, v are the
distances of object and image measured on opposite
sides. To find one of the quantities w, v, f, given the
other two, we can proceed as follows.

Take two axes Of, Oy at right angles to one another,
and draw the line bisecting the angle between them.

Graduate Of, Oy uniformly with the same unit and
109
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call them u, v respectively. Graduate the bisector
with unit ./2 times as great and call it f. Then
o

2 v

2

-2 -} U 2

o3

-2

F16. 54.

three collinear graduations u, v, f satisfy the above
relation (Fig. 54).

66. Nomogram for the Relation between the Elastic Co-
efficients of a Body.

If E is the modulus of elasticity of a body, K its
bulk modulus and C the modulus of rigidity, then we
have 1 1 1

E 3¢ TR
To construct a nomogram for this relation we take the
diagram of Fig. 54, and substitute E for f, multiply
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the unit of u by 3 and call the u scale C, multiply the
unit of v by 9 and call the v scale K. Then three
collinear graduations £, C, K satisfy the above
relation.

67. Nomograms with Perpendicular Scales.

Let the scales be taken along the axes of &, »
respectively. Let P be a point (£, #) on the z curve
]

T~

ék
0 a £

T~

Fic 55.

of a nomogram. Take a line through P (Fig. 55),
and let the intercepts on the axes be a, 5. Then,
since the line passes through the point (&, n), we have
the relation £ 7

atp—L

and this is satisfied by all lines through P. If, then,
we have an equation which can be written in the form

A(z) B(x)  _
— T 10

we get a solution at P on the line a, b if the two
equations are identical—because these relations must
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hold for an indefinite number of pairs of intercepts
a, b. We therefore have

A@)=—§ B(z)=-—,
which gives us the  curve and also the graduations.

It is often convenient to plot the z curve straight-
forwardly from the equations

E=—Ad(z), »=—B(),
looking on z as a parameter : it is also the graduation
on the z curve.

68. The Circular Nomogram.

Let us see, e.g., how Whittaker’s circular nomogram
for the quadratic equation is obtained with the per-
pendicular scales used in Fig. 48. Let the equation be

2 +a’z+b' =0,
and write it in the form
2 —7+1 1,
a
This can be written

1 1 xz 1
“Ir@a Ty 10

Comparing with Eiro,

we see that E__—T—HII—EE’ n=1—_*_w—$2-.

This gives E+r7=f and z=y/,
the equation and graduation used in Ch. V. § 55,
Figs. 47, 48.
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The graduations of the a, b scales are given by
1
= 2=
which agree with the graduations used in § 55.

a—=

69. Nomogram for x=aP,

Another interesting nomogram with perpendicular

scales is that for any number raised to any power.
[24 Q

N OB -

]

0

15

K= 0 0 N O

x'

Fic 56
Construct a logarithmic scale a along the axis of 7,
and a segmentary scale b on the £ axis between the
origin and the point O’ (§=1), so that each graduation

B.N. H
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is the ratio of its distances from 0’, O respectively.
At O’ on the line £=1 construct a logarithmic scale,
x, exactly like that on the » axis, but in the opposite
direction. Then we get for collinear graduations
log z=blog a,
giving z=a’. If we also graduate 2’ on the z scale,
but backwards, we get
log #’=—blog a,

giving ' =a"®. If both sets of graduations are given,
any power, positwe or negative, of any quaniity can be
found. The remarkable simplicity of this nomogram
makes it very convenient when great accuracy is not
required. In Fig. 56 we have made a more con-
venient nomogram, using oblique axes, as in § 48.

70. Nomograms with Intersecting Scales at Any .Angle.

We can justify the suggestion at the end of § 69,
as follows. Let the scales be drawn on lines Of, Oy
defining a system of oblique coordinates. If P(£, ») in
Fig. 57 is a point z on the  curve of a nomogram, let
a line through P cut off intercepts @, b from the axes
at the points P’, P”, so that OP’ =a, OP" =b, measured
positive and mnegative, with the usual convention.
Draw PM, PN parallel to the axes. Then OM =§,
ON =3.
E§ OM NP PP

NOW E——OP,=OP/=P”P/3
and n ON PM PP
B—OP”—P”O—P”P/ H
hence E 1 _PP+P'P_P'P =1.

a b= PP PP
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Thus all lines through P have a, b satisfying the

equation

ﬂ_
E+B_1'

If then z 1s a solution of the equation

A(@) , Bx)  , _

we have A(x)=—§& B(x)=—y,

as In the case of rectangular coordinates.

n

sXP”
P(E"’J)

Fie 57.

We see, therefore, that the general method is just
as simple as the method with perpendicular scales.
With oblique coordinates the plotting will as a rule
be more difficult owing to the non-availability of
rhombussed paper: In practice we may use the
method sketched in §§49-50, to be dealt with in
greater detail in the next Chapter.
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71. Nomogram for Optical Formula with Equal Scales.
Putting E=y=—A(z)=—B(z)=x
in § 70, we get 1 1 1
a5
the optical formula. The student will easily convince
himself that if we construct the nomogram of Fig. 54
with an angle of 120° between the £, 7 axes, then the

three scales will all have the same unit. This is from
some points of view a rather useful property.

Exsmrpres VIL
1. Construct nomograms for

0 F=721+5=3 i) 7=0622(; -3
o 1 1,11, o1 171 1y 1
ol At A A @) ;=3(;-5) +o

These formulae are adaptations of familiar ones 1n optical work.
To add up three or more reciprocals, as in (ui) and (iv), we use
reference lines as in Ch. ITI.

2. Construct a nomogram for}-. = ,,l; -5 using parallel coordinates.

Compare the advantages and disadvantages of this nomogram
and the nomogram for the optical formula given in the text.
3. Shew that, by the use of the 1dea in § 71, 1t 1s possible to
construct a nomogram for
1 1,1, 1.1
P RRTRTRT
to any number of reciprocals, with not more than four scales.

4. Construct nomograms for
L1 1 1 1 1
@) —+__b_2’ (i) smA TSn B~ sinC’

. abe
(i) o= b’ 0¥) 26 Ttc 7 ea
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CHAPTER VIII

PRACTICAL AND AUTOMATIC CONSTRUCTION GF
NOMOGRAMS. EMPIRICAL NOMOGRAMS

72. We have on one or two occasions, after dis-
cussing the construction of certain nomograms, had
recourse to an automatic process which enables us to
make the nomograms without any theoretical discus-
sion. It is, of course, in every way preferable that
the student of the subject should have a clear
understanding of the principles involved and of the
theoretical basis of the construction. Yet, for
practical purposes, what is required is the nomogram
and not the theoretical work on which it is based. We
shall, therefore, devote some space to a more detailed
discussion of the practical and automatic method.

73. x=a-+Db.

Let us return to the simple nomograms of the early
chapters of this book. Take, e.g., the nomogram (with
parallel @, b scales) for

r=a-+b.

If the point P (Fig. 58), to which is assigned the

graduation z, is to be on the = scale of a nomogram
118
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for z =a+0b, then, if we draw two lines 4,PB,, 4.PB,
through P, meeting the parallel a, b scales at 4,, 4,,
B,, B,, we must have
graduation A+ graduation B,
=graduation A,-+graduation B,,

. By
A, B
2
Ag p
Aq
Bs
a 1/
Fic. 58.

or graduation A,—graduation 4,
=graduation B, —graduation B,.
Similarly, if 4,PB;, A,PB,, etc., are other lines
through P, we must have
graduation A;—graduation A,
=graduation B, —graduation Bs,
graduation A,—graduation 4,
=graduation B, —graduation B,, etc.
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It is therefore clear that if the 4 graduations increase
by equal stages 4;—>4,, A4,—>4, A;—~ A4, etc.,
then the B graduation must decrease by equal steps,
B, > B,, B,—> B,, B, > B,, etc. We must therefore
graduate the a, b scales uniformly. In our examples
in Chapters 1., II1., we have often adopted equal units
in @, b or other units chosen specially. In general
this is not mnecessary. Also the zero points on the
two scales can be chosen as we wish, or may find
convenient.

Having chosen convenient units in the a, b scales,
we can now construct the nomogram as follows.
Suppose we wish to find the point P at which the
x graduation is to be 5. Since, e.g.,

5=5-+0,
and also 5=0+45,

we have only to join the 5 on the a scale to the zero
on the b scale ; then join the zero on the a scale to the
5 on the b scale. The point of intersection of these
lines is the point 5 on the x scale. This is done in
Fig. 59 for a few values of z. Although the various
x points are obtained in a somewhat erratic manner,
it 1s at once obvious that the z scale is itself a straight
line uniformly graduated, and the graduations can
now be inserted.

The same method can be employed for the alter-
native nomogram for addition (§19). The reader
should argue this out for himself, by taking a figure
like Fig. 58, but with the point P outside the space
between the a, b scales.
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But this method has little to recommend it in the
case of addition and subtraction nomograms, and
therefore also in the case of multiplication and division

-2

-3

Fic 59. a

nomograms, which, as shown in Ch. III., are easily
derived from the former. It i1s an easy matter to
construct the nomograms in Ch. ITI. by the straight-
forward arguments there given. The scales are all
parallel logarithmic scales, and there is little adv:ex,n-
tage in obscuring the simple algebraic and geometrical
ideas underlying the process. The present method,
however, is decidedly useful when given ranges are
prescribed, see §§ 48-50.
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74. asinx-+bcosx==1.

‘When, however, we have to construct more difficult
nomograms, as e.g. a nomogram for a quadratic
equation, this method is really very useful, and often
saves much time and labour. We have already
illustrated this in the case of the quadratic equation
with definite ranges for the a, b scales, and have also
indicated its use in the case of the equation

asin x-+b cos z=1.

The former is discussed in § 49. We shall now give
the method again with special reference to the nomo-

gram for asin £+b6 cos x=1,

discussed theoretically in § 59.

Suppose we wish to construct this nomogram for
values of @ between 1 and 2, and values of b between
0 and 1. Our object is to find the z curve and its
graduations—in other words, we want a succession of
points to each of which is assigned a certain gradu-
ation .

We draw the two scales a, b with some convenient
units. Since the ranges are equal, we use equal units.
The distance apart is chosen so as to make the figure
as “ square’’ as possible. This is shown in Fig. 60.
Choose some value of b, say b=0. Then, if we join
this point on the b scale to any point on the a scale,
we have somewhere on this line the graduation z
given by 1

“=snaz
Thus, to get the x points for
0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°
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we join the point b =0 to the following points, respec-
tively, on the a scale :
w, 576, 292, 2, 1-56, 1-31, 1-15, 1-06, 1-02, 1.

Again, take some definite value of @, say ¢ =2. Then,
if the point @ =2 is joined to any point b on the b scale,
2 T !

1 -"-.SU

this join passes through the graduation x on the
x curve, 1if _1-2sing
 coszw

=sec r—2 tan x.

Hence to get the x points for
0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°,
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we join the point a=2 to the following points, respec-
tively, on the b scale :
1, 0-67, 0-33, 0, —0-37, —0-82, —1-46,
—2-58, —5-58, — oo.
The intersections of the pairs of lines for each value of
z gives the points on the x curve for these values of .
In the present instance it happens that the two lines
for 30° are really the same. We therefore choose
some other means for fixing the position for x=30°,
E.g. we can take a=1, and then
1—sinz
cos ¥

=1/./3 =./3/8 =0-58.

The join of the points @ =1, b =0-58. thus gives z=30°.

We now join the points thus obtained by as smooth
a curve as possible, and insert additional graduations,
either by repeating one or other of these processes,
or by free-hand interpolation, taking note of the way
in which the graduations already obtained suggest
these subdivisions. In this way Fig. 60 becomes
the nomogram in Fig. 50.

75 () A®a-+Bx)b-+1=0: Automatic Process

In each case little difficulties may present them-
selves, and a little ingenuity may be required to over-
come them. It is not possible to give a list of such
difficulties and the means of overcoming them. This
must be left to practice and experience. We shall
now give the general
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Rule VII. To construct a nomogram for
A@a+BEb4+1=0

with given ranges for a, b, choose units for a, b, so that these
given ranges are as nearly as possible represented by egqual
lengths, and construct the a, b scales parallel to one another
and at a convenient distance apart. Choose some wvalue of b,
say by ; then calculate for a number of values of a the quantity
_ 14+DbBX)
o A® -
and join the point b, to these points on the « scale. Then
choose some value of «, say a,, and calculate for the same values
of a the quantity 1-+a,A(x)
S

E

and join the point a, to these points on the b scale. The
intersections of corresponding joins give the points on the =
curve for the chosen x values.

Or, instead of choosing b, and then «;, choose two values
by, by, and use the lines given by

_1DbBE

. ___1+blB(x)
Am b=b, a=-—-"1—F7—".

or choose two values a;, «,, and then use the lines given by

1-ra,A®X

1+a,A
; a=al, b_—-__....__t——l(fz.
B

In each case the particular choice to be made must be deter-
mined by a few preliminary trials

Thus, in § 74, it is easy to see that 1f we had chosen a
second value of b, say b=1, we should have got
unsatisfactory information, as many of these lines
are rather close together.
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76. sin x=—a -} bx.
We shall take as a further instance the equation
sin z =a -+ bz,
in which z is to be taken in radians (there are 3-1416
radians in 180°) in the term bx. The ranges for

1

4Ll

-
—
-

-

=+

Fia OL.

a, b are supposed to be given as 0 to 1, 0 to —0'5
respectively.

We take the b unit twice the a unit and construct
the a, b scales as in Fig. 61. After a little trial we
find that it is convenient to choose b =0 and b = —0-5.
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For the former we have a =sin z, for the latter we have
a=sin x+ix. If we wish the nomogram to read in
degrees, we take

z=0° 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°.

-

1 o
8090
70
60
50
=01
40
30 -0 2
05
20
-0 3
10
~0-4
(o] o} ~0-5
a

Fie 62.

This means that we have to join the point =0 to
the a points

0, 0-17, 0-34, 0-50, 0-64, 0-77, 0-87, 0-94, 0-99, 1-0;
and the point b= —0-5 to the a points

0, 0-26, 0-52, 0-76, 0-99, 1-20, 1-39, 1-55, 1 68, 1-79.
The respective intersections give the z points for
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these values of x, and it is clear that no values of =
are needed outside this range. We put in the useful
subdivisions, and we get the nomogram in Fig. 62.

77. In carrying out the practical process of this
chapter it is evidently important to have some check
or test for the accuracy of the result. The first useful
check is the fact that the isolated z points thus
obtained must lie on a swmootk curve, and that the
intervals must grow or diminish in some continuous
manner and not erratically. The next check consists
in actually testing the resulting nomogram. Thus,
let us take b6=—0-25. Then we have a=sin z+41zx.
If then we join the point b= —0-25 to the a points

0, 0-22, 0-43, 0-63, 0-82, 0-98, 1-13, 1-25, 1-33, 1-39,
the lines must pass through the = points found. This
condition is seen to be satisfied in Fig. 61.

78 FEmpirical Nomograms.

The method of this chapter is particularly valuable
in the case of relations which are only obtained empire-
cally, i.e. from a number of experiments, and for which
the algebraic equation is not known. If we know
that the relation between z, @, b is of the form

A(z)a+B(x)b+1 =0,
but do not know the forms of the functions A(z),
B(x), we can still construct the nomogram by Rule
VII, § 75. All that is needed is the information
mentioned 1n the rule. Thus, if for one value of «,
say a,, we know the values of b for a number of values
of z, and for another value of a, say a,, we know the



EMPIRICAL NOMOGRAMS 129

values of b for the same values of z, we can draw two
sets of lines as suggested in the rule, and the inter-
sections of corresponding lines will be the z points
on the x curve.

If we are not sure that the relation

) A(z)a+B(xz)b+1=0
is a correct representation of the facts, this is tested
by the process; for on drawing the lines for some
other value of a, say a,, we at once see whether the
suggested relation is correct by the accuracy with
which the new set of lines pass through the = points
already found. Great certainty can be attained by
the application of this test several times with sets
of lines through a few chosen values of a or b.

79. (ii) a*®pB®—=C(x): Automatic Process.

We have so far taken the case where the relation
between z, a, b is of the form

A@)a+B(z)b-+1 =0,
or, more generally,
A(z)a+B(z)b+C(z) =0,
for which, in accordance with the analysis of § 52, we
use parallel coordinates. If the relation is of the
form ad@HBE =C(x)’

such as, e.g., x=ab, 22 =a%b%, etc., we take logarithms
of both sides, and we deduce a relation of the form
already used. Thus, for this new type of relation
we take logarithmic scales for a, b and proceed in the

same way.
B.N. I
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80. bx=a*
As an instance take the equation
z =a"/b,
10
8
8
7
e
5
a
3 3
2 2
o
1-8
3
[2-4
Fia 63.

in which a ranges between 1 and 10, and & between
2 and 10. We get, by taking logarithms,

log x =2 log a —log b,
and this is of the form already discussed. We take



EMPIRICAL NOMOGRAMS 131

two logarithmic scales with the same unit for a, b
(Fig. 63). If we choose a=1, we get

1
b =5,

giving a set of lines through the point a=1. If we
choose, in addition, a =10, we get a set of lines defined
by this point and , 107

T

The intersections of these lines give the z curve and
the graduations as before. The result can be tested
as suggested in § 77.

81. (iii) a*™[B(x)]°=C(x): Automatic Process.

There is another type of equation that can be
treated in the same way ; this is one in which a, say,
occurs in the form log @, and & as an ordinary number,
so that, if log @, b are parallel coordinates, the equation
is of the form

A(z) log a + B(x)b+C(x) =0.
It is readily seen that any equation of the type
C(@) =a“[B()}
belongs to this form.

82. a¥=xP.
An example of this sort is given by the equation
a® =z,
Taking logarithms, we get
z log a =b log =.
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It will be found convenient to take the unit of
loga 5 times the b unit, and construct a uniform
b scale and a logarithmic a scale, as in Fig. 64.

To get points on the z curve we search for means
of getting sets of lines on which certain values of
o will lie. One idea suggests itself at once. The
equation is clearly satisfied for a=b=z, no matter
what this value may be. Hence the line joining
a=1 to b=1 must contain the point 1 on the z curve ;
the line joining @ =2 to b =2 must contain the point 2
on the z curve ; and so on. This device is, of course,
special to this equation, but it is given here as an
example of the sort of thing of which one must be
ready to take advantage.

Again, if a=1, we must have b=0 for all values of
z. Hence we let the lines already obtained cut the
line joining a=1 to b=0, and the points of inter-
section are the corresponding % points required. The
z curve happens to be a straight line. Note that on
the x scale each point has two graduations, but that
only part of the z line is graduated at all. This
indicates that it is not always possible to find
values of z to satisfy the equation for given a, b.
It is curious that the extreme graduation is e, the
theoretical quantity 2-71828.... The mathematical
reader will find it interesting to investigate this
point.

In general, equations of this third type will have
to be treated in the same manner as the first two

types, (1), (11).
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83. Double Graduations.

The double “ graduations ” that arise in Fig. 64
can be imitated artificially in problems where different
units may be used by different people. Thus, if we
make a nomogram for s=uf, giving the distance
described in time ¢, when the velocity is #, we may
on one side, say the left, of the u scale, graduate it
in ft./sec., on the other side in miles/hour; the ¢ scale
can be graduated in seconds on the left, hours on the
right ; and the s scale in feet on the left and miles
on the right. In using this nomogram, if attention
is pald to the graduations on the left, we get the
answer when the units are feet and seconds; if atten-
tion is paid to the graduations on the right, we get
the answer when the units are miles and hours. The
student will have no difficulty in applying this device.

(Do, by the automatic method, some of the examples at
the ends of Chapters I11., IV., V., V1., using suitable
ranges.)

Exavrres VIIL

1. Construct nomograms for

(i) smz=a+bcosz, a, branging0 to 1, 0 to —%;
(1) alogyaz==+b, @, branging 0 to 1, 1 to 10;
(i) al0*+310—==1, a,branging 0 to };

(iv) log (1 + o) =ax +b3? a, branging +% to — ;.

2. Construct nomograms with surtable ranges for
(i) bz’=a"; (1) a=b*=1; (m) a%p* =g3;
(iv) ba?=a®; (V) @R —1; (v1) aobF =2

(vi) a®b=2>; (vi) a“’b”l: =3x2; (ix) a”b—i' =2z.
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3. Construct nomograms with suitable ranges for
(1) a®=2z"; (il) a®>*®=z%; (1) a®l=zb;

(iv) a*2P =1z ; (v) a®*x2 =z ; (vi) a®ab =£_.

4. Construct doubly graduated nomograms for
(i) v=/t (feet and seconds, centimetres and seconds) ;

(ii) K.E.=%‘v2 (miles/hour and lbs, cm./sec. and kilo-
grams) ;
(iii) R=K7r2U? (r in feet and U in ft.[sec., r in cm. and
U in cm.[sec);
(iv) k=§;—2 (v in ft./sec. and fin ft.[sec.[sec., v in cm.[sec.
9 and fin cm [sec./sec ).
a-b

5. Construct a nomogram for ””=1E(E,'z7)'

6. Construct a nomogram for .H=I%+H2a,a for H,, H,

between 10 and 50, and % between 3 and 3.



CHAPTER IX
METHOD OF DETERMINANTS. FOUR VARIABLES

84. Determinants of the Second Order.

For the purpose of the present chapter the reader
will need a certain acquaintance with the theory of
Determinants. This is best obtained by reference to
some standard work on Algebra, but the information
indispensable for application to nomography is com-
paratively simple.

Suppose we have four quantities or elements :

@, bl H
Gy, bs.
The expression of two terms
by —asby
occurs frequently in algebraic applications. Thus, if
we have the simultaneous equation

omr+by=1,
AT +boy =1,
then the solutions are
by —b, @ —ay

T= by —ash, Y T agb, —anb,

The denominators are the same in both, and is in fact

the expression just mentioned.
136
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Let us introduce for a,b, —a,b, the notation
ay, bl
s, b2
we call this new expression a determinant of two rows
and columns, or of the second order. The rows are
characterised by the suffixes 1, 2 respectively, while
the columns are characterised by the letters a, b re-
spectively. The value of this notation is at once
grasped by considering the solutions of the equations

?

% +by =cy,
. 0% +byYy =ca.
These solutions are
x_ﬁbz —Caby A1Cy — UGy |

Tayb, —ayb,’ YT @b, —ab,’
which with the determinantal notation can be written

| ¢, b @, € l
| Ca, bp _ | @, o
xr—= ’ == -
5 bl y a;, b]_
Az, bz s, bz

It is clear that this notation gives simple forms to the
solutions, forms that are easily memorised.

If we multiply the two elements of either column
by the same quantity, k&, so that the determinant is
]{‘als bl @, kbl
ka,, b, as, kb,
the value of the determinant is also multiplied by %.
If we multiply the elements of either row by any such
quantity, then once again the determinant is multi-
plied by this quantity. These statements are obvious
by definition.

’
now
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It is equally obvious that if we interchange the two
columns, the determinant retains its numerical value
but has its sign changed. If we interchange the two
rows, the determinant is again changed in sign, but is
unchanged in numerical value.

Again, if we multiply the elements of a column by
the same quantity, £, and add to the corresponding
elements of the other column, the determinant is
unchanged in value. For example, let us multiply
the elements of the first column by %, and add to the
corresponding elements of the second column. The
new determinant is

ay, b, +ka; |,
@y, by +-ka,
and this is equal to
01 (b2 +kaz) —az(b;, +kay),
which reduces to a, by —asb;.

In the same way, if the elements of one of the rows
are multiplied by the same quantity, and added to the
corresponding elements of the other row, the deter-
minant is unchanged in value.

It now follows that ¢f such a determinant is equal to
zero, the equation remains true, 7.e. the determinant
is still equal to zero, if we carry out any of the pro-
cesses thus enumerated. We can multiply the ele-
ments of any column or of any row by a given con-
stant ; we can add to the elements of any row or
column the corresponding elements of the other row
or column multiplied by any given quantity : we can
interchange the two rows or the two columns: any
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of these processes, or any number of such processes,
carried out wn any order, do mot affect the equation, and
the determinant obtained is still zero.

85. Determinants of the Third Order.

Let us now extend the definition as follows. Sup-
pose we have nine quantities or elements in three sets
of three each, namely :

@, b, e
a27 bzs 02 ;
as, b33 03'

The expression of six terms

10563 — @, 0562 + o3y — b1 s 4 b1 0, —a3bacy

is of frequent occurrence. The reader will easily
verify for himself that the solutions of the three
simultaneous equations

ax+by+ez=1,

ax +boy +cp2 =1,

asx +bsy +csz =1,
all contain this expression in the denominators. It is
therefore convenient to have a notation for this six-
termed expression, and the notation used is

als bl: 01 i ’

az: b23 (32

as: bs: 03
a determinant of three rows and columns, or of the third
order.

Just as in the case of the determinant with two rows

and columns, if we multiply the elements of any row
by a given number &, the whole determinant is multi-



140 METHOD OF DETERMINANTS

plied by this number. This is because if, say, we
multiply the elements of the first row by %, then in
the expression
b0y — 10365 + 03030, — 30103 + @010, — 3020y

all the elements with the suffix 1 are multiplied by Z,
and each term contains one such element as a factor.
In the same way, if the elements of, say, the first
column are multiplied by a given number, the deter-
minant is multiplied by this number, because, in this
same expression, each element a is multiplied by the
same number, and each term in the expression
contains one such element as a factor.

Suppose now that we interchange two of the rows,
for example, the second and third. The value of the
new determinant is obtained by interchanging the
suffixes 2 and 3, so that we get

@050 — @ baC5 +asbacy — 3016 +a2by s — b,
and this is the original expression with all the signs
reversed. The determinant thus retains its numerical
value, and only its sign is changed. The same applies
to any other such interchange of rows, and also to any
interchange of columns.

Finally, if to the elements of any row we add the
corresponding elements of any other row multiplied
by a given quantity, the value of the determinant is
unaltered. For example, let & times the second row
be added to the first, so that the determinant is now

a1+ka2) bl +kb2: cl +k02 .

a’2: bz, 02
s, bs, Ca
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When this is worked out we get

(1 +-Kap) (boCs —bay) +asbs (3 +kes) —an (by +Kkbs) ¢
“+ag (b +kby) ca —ashs (61 +kcy),
and this reduces to the original value. The same
applies to columns : if we add to the elements of any
one column a given number of times the correspond-
ing elements of any other column, the value of the
determinant is unchanged.

Suppose now that the third order determinant s
equated to zero. It follows that the determinant vs still
equal to zero if we multiply any row or any column by
a gwen number ; if we interchange any two rows or any
two columms ; or if we add to any row any multiple of
ewther of the other rows or to any column any muliiple
of either of the other two columms.

In dealing with determinants of the third order one
case of particular importance is that in which all three
elements of the third column are unity. This means

0 =0y =0Cz =1.
The determinant is now

a13 bl: ]- ’
a2: bza 1
a?n 639 l

which when worked out becomes

by — @, b5 + 0305 — 201 +ash; —asbs.
It s thas particular type of determinant of the third order
that we shall apply to nomography.

86. Collinear Points: Determinantal Condition
The method of nomography is based upon the pro-
perties of three collinear points. Now let (&, m),
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(&1, 73), (&, 73) be the cartesian coordinates of three
collinear points ; then there must be a relationship
which expresses the condition of collinearity. It is
that the gradient of the line joining the first point to
the second point must be the same as the gradient of
the line joining the first point to the third point. This

means g — 7y Ng — My

Ez “‘51 =fs —El ’
which, when worked out, gives
Eina—E&1s +&zms —&m +&m —&3n, =0.
This relationship must be satisfied if the three points

are collinear. Using a determinant with three rows
and columns, we can write this condition in the form

EI: 7, 1 [=0.
Ezs ng, 1
53: Y3, 1

87. Derivation of Nomograms: x2+ax+b=0.

Let us suppose that &, n, are both functions of a
variable z ; this means that the first point lies on a
curve defined by giving the coordinates (&, n,) of any
point on it in terms of the parameter . In the same
way let &, 7, be functions of a variable @, so that
the second point lies on a curve defined by giving the
coordinates (&, #,) of any point on it in terms of
the parameter a. Further, let &;, #; be functions of a
variable b, so that the third point lies on a curve
defined by giving the coordinates (4;, 7;) of any point
on it in terms of the parameter 4. The three curves
can be plotted and graduated in terms of z, a, b.



FOUR VARIABLES 143

For example, suppose that

E —_ —-—m— ¥, — ___%.2_ .
. z+1° M7 Tgr1’
522_13 Ng =Q;
53 =0, ’73=b'

It is seen that the second point lies on the straight
line £=—1. The third point lies on the straight line
£=0. The first point lies on the curve

&

E+1°

This is an hyperbola with an asymptote along the line
E=—1. (See page 78, Rule VI.)

Now the parameters z, a, b of the three points in
which the three curves thus defined are cut by any
straight line must satisfy the determinantal equation
of §86. When &, n, are given in terms of z, &, 7,
in terms of a, and &, 7, in terms of b, we have in fact
an equation for z appropriate to the particular straight
line in question, and involving «, b. Thus, in the
example just taken, the equation connecting the three
graduations z, @, b in which the hyperbola and the
a, b scales are cut by any straight line is

N= —

x a2 |
BEE U= G
—1, a, 1
0, b, 1

which readily reduces to

a2 +ax+b=0.
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Hence we see that the solution of the quadratic
equation 2 +ax+b=0
is obtained by means of the nomogram defined in
Chapter 1IV., § 47, as d’Ocagne’s Nomogram.

We can now see how this method works more
generally.

Rule VIII. Let &, 7, involve only =z, &, 7, involve only a,
and &;, 7, involve only & ; so that (£, ;) lies on a curve whose
graduations are in terms of z, (£, 7,) lies on a curve whose
graduations are in terms of a, (£; 7;) lies on a curve whose
graduations are in terms of 5. Then three collinear points on

these three curves give a value of = corresponding to values of
a, b as a solution of the equation.

Els 71s 1 = 0
52; N2, 1
533 7z, 1

in which for &, n;; &, 7125 &5 ns We substitute their values in
terms of z, a, b respectively.

88. Further Examples.

As a further example use the same values of &, 7, ;
&, 7, as before, but now let

x 3
s S

The reader will easily verify that we get a nomogram

for 2 +ax+b=0.
Again, suppose that
51 =t:£’ )71 =3 —-_x_3_... ;
z+1 z+1
52 =1: g =a;

E3=—1’ /e =b.
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We see at once that the equation for z in terms of
a, bis

r—1 x3
RS U
1, a, 1
-1, b, 1
which reduces to
3 4ax+b=0.

We thus have another nomogram for the cubic
equation, but now the a scale is along the line £=1,
and the b scale is along the line £= —1.

Whittaker’s nomogram (see § 55) for the quadratic
equation can be obtained by this method as follows.
Let

£ = 1 oz
1T a2 M Ty gge
1
Ez=m: 72 =0 ;
1
& =0, ’13=—‘a-

The second point lies on the line »=0. The third
point lies on the line £=0. The first point lies on the
circle £2 +»2 =£.  Also the equation between z, a, b is

1 z
=
1422 112 1 ?
1
. 0, 1
1-5
1
0, —=, 1
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which becomes
x? +ax+b=0.

We have in fact the circular nomogram of Fig. 48.

89. Different Nomograms for same Equation.

The method of determinants can also be used for
the nomograms of Chapter IIL., but it is clear that the
application of the method in such cases is really a
waste of labour. The immediate value of the deter-
minantal method lies in other considerations.

We have seen that if in a determinant the elements
of any one column are each multiplied by the same
quantity, and added to the corresponding elements of
another column, then the value of the determinant is
unaltered.

If now in the determinantal equation of § 86, where
in the first row only = occurs, in the second row only a,
in the third row only b, we add to the elements of any
column some multiple of the elements of another
column, we get a new determinantal equation of the
same type as before. But the value of the determi-
nant is unaltered. Hence we have another nomogram
for the same equation, and so it is possible to study
the different ways of dealing with any one equation.

For example, take the quadratic equation

2? +axr+b=0,
as dealt with in § 87. In the determinant
x x?
-z 1 |=
x+1° z+1’ 0
-1, a, 1
0. b. 1
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add the first column to the second. We now get the
determinantal equation

—5—%’ —x, 1 [=0.
—1, a—1, 1
0, b. 1
This means that to solve the equation
a2 +axr+b=0
we can use collinear points
&i=— E—ﬁ—i m=-—;
L=—1, np=a—1;
& =0, ng =b.

We have the same @, b scales as before, except that
the a scale is now graduated differently, while the =
curve now has the equation
&n—E+n=0.

It is somewhat easier to deal with the z curve in this
form, since both asymptotes are parallel to the
coordinates axes.

Other manipulations are also possible. Thus, take
the same determinantal equation

z x>
—_, — . 1 |=0,
r-+1 z+1
—1, a, 1
0, b, 1

and divide the first row by —x2/(x+1), the second
row by e, the third row by b; interchange the second
and third columns, and finally add the first column to
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the new second column. We get the determinantal

equation
q }-’ '_-lz-, ]. =Oo
x x
1
—= 0 1
a 2
1
O, 'E: 1
This means that we can use
1 1 -
& =2 M= TR
1
Ez = '—a: g =03
1
Es =0, 73 '=B .

We have in fact the parabolic nomogram of Fig. 38.
It is clear that in this way we can examine different

nomograms for any given equation, and decide upon

the most convenient form for any particular purpose.

90. General Type.

The general type of equation to which the deter-
minantal method is immediately applicable can be
deduced from

El: 7, 1 |=0.
Eza ng, 1
Es: UED) 1

In this equation &, 7, are functions of =z, &,, », are
functions of @, and &, #; are functions of 6. Writing

X (z), X' ()
for &, n,

4 (a), A4’ (a)
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fO]'.‘ 52: N2y

B (b), B (b)
for &, 7;, we get the equation
X (2){4'(a) =B'(b)} —X'(z){4 (a) —B (b)}
+{4 (@) B'(6) —4’(a) B (b)} =0

as the general fundamental type of equation soluble
by the method of determinants. We see that the
equation of the type given in § 52, to which parallel
coordinates are immediately applicable, is a special
case of this general type, in which 4 (a) and B’(b) are
constants or zero.

91. Equations with Four Quantities. Family of x Curves.

The method of determinants suggests immediately
a very important means of dealing with equations
involving four variable quantities. It is true that we
have already examined problems with four or more
quantities in Chapter 1II. The method there, how-
ever, is one based essentially upon the successive
application of the three variable method, and is not
usable if the four or more variables cannot be arranged
in such a manner. Thus suppose we have the equation

2 +Ax? +ax+b=0
in which the coefficients A, @, b can assume any values
(possibly restricted to lie within certain limits). In
this equation we cannot deal with =, a, b first and then
introduce A, as we would do if we wished to make a
nomogram for, say,
X=LAB.

This is because in the cubic equation just mentioned
all four variables must be dealt with simnultaneously.
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Let us use the determinantal equation of § 86 in
which we make

N . __a:3 +Aq?
&= z+1° T T Tzl
22 =—1, Ny =0 ;
E3 =0, %=b¢
The equation is now
_z T,
z-+1 r+1
—1, a, 1
0, b, 1

which works out to be
a2 +Ax? +ax+b=0.
The a, b scales are the same as in § 87, but the defin-
tions 28 gt
‘5“"9?4—_1’ g |

mean that the point (&, n,) lies on one member of a
family of curves, depending upon the particular value
of A. This suggests that in order to solve the cubic
equation in which all the terms are present, it is
necessary to draw not one x curve, but a family of
x curves, each curve corresponding to some particular
value of the coefficient of x2.

In Fig. 65 we have drawn these curves for A=—10
to A =10.

In order to facilitate the use of a nomogram con-
taining a family of x curves, it is advantageous to join
up the points on the different x curves corresponding
to any given value of . Thus we find in Fig. 65 that

2
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all the z graduations for any given value of «, and for
all values of A, lie on the straight line

@

=—=7
By drawing all these straight lines we get another
famaly of curves. The = curves originally drawn corre-
spond to constant values of A, and the new curves
correspond to constant values of z. We thus have a
network consisting of two ntersecting famalies, and any
point in the network corresponds to definite values of
x and A.

This applies generally to any equation for which we
can use the method here discussed. Thisis when &, 7,
are functions of a, &, 7, are functions of b, while the
definitions of &, 7, In terms of = and A suggest that
any point (&, n) can be considered as lying on two
curves, one being obtained by eliminating = between
&, 7, so that we have a curve for a given value of A,
and the other by eliminating A between &, #,, so that
we have a curve for a given value of «.

The general type of equation to which this method
1s applicable is

X (z, M) {4' () =B'(0)} —X"(@, M) {4'(a) —B (b) }
+{4 (a) B'(b)—4’(a) B (b)} =0,

in which either X or X’ or both X and X’ are functions
of z and A.

92. Nomogram for Mixtures.

An interesting example of a nomogram with four
variables is the nomogram for mixtures. Suppose
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that three substances of given prices are to be mixed
so as to produce a mixture of a given price. It is
clear that there are an infinite number of ways of
doing this: we can find them as follows.

Let the mixture consist of

a %, of substance 1 whose price is a,
b 9%, of substance 2 whose price is 8,
¢ %, of substance 3 whose price is v,

a, B, v being in descending order of magnitude. Let
the required price of the mixture be §. We have two
equations for a, b, ¢, namely,

a-+b-+c=100,
aa+bB+cy=(a-+b+c)d.
The second equation can be written
a (a—38) +b (B—38) +¢ (v —38)=0.
The quantity ¢ is somewhere between the highest
and the lowest of «, B, y. Let us suppose that

a—0=], B—38=m, d—y=n,
so that I, n are always positive. We get

la +mb =nec.
But
c=100—a—b;
hence
la +mb=n (100 —a—>b),
so that

(I +n) a+(m+n) b=100n.
Now let us write
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leaving &, m at present undefined. The deter-
minantal equation

'513 s 1 =0
1, a, 1
—1, b, 1

when worked out becomes

a(1+&)+b (1—&)=24.
Comparing this with

(I+n) a+(m+n) b=100n,

we see that we must define &, », by means of the
equations .

1+& I4+n 1-§ m+n

P 100m 25,  100m "

1 l4+m342n
t —_— T ————,
It follows tha - 100m
I—m 100n

so that &=y o M =ITmaion

In reality the quantities I, m, n are not three quan-
tities, but two ratios. 1t is convenient to put

A l+m

— =P, —.——..__=g

m
_r=1 g _..50
We get & = WESEETE nl_l—}—q'

It is now clear that for a given value of ¢, the point
(&, 1) lies on the straight line

50
1-+gq

)7=
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For a given value of p the point (£, #) lies on the
locus defined by

222
This is again a straight line passing through the point
7=50. Hence for all values of p we get a family of
straight lines passing through the common point £=0,
n=50. If we put »=0 in the equation of any such
straight line, we get
_p—1
E=pr1-
This means that the distance intercepted on the & axis
between the b and a scales is divided in the ratio p: 1
or l:m.

We now have the nomogram given in Fig. 66, where,
for any given values of I, m, n, we get some definite
point on the network of straight lines, and the values
of a, b given by any straight line passing through this
point, and cutting the @, b scales above the £ axis,
satisfy the conditions of the problem. It is clear that
for any given values of I, m, #» an infinite number of
lines pass through the particular point of the network,
so that by taking a straight edge through this point,
and rotating it round this point as a pivot, from the
position in which it passes through the zero graduation
on a, in the anti-clockwise sense, till the position in
which it passes through the zero graduation on b, we
get all possible values of @, b which satisfy the con-
ditions of the problem.

It is worth noticing that if we take the part of the
7 axis between 7 =50 and » =0, divide it into a hundred
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equal parts, and graduate it from 0 at =50 to
100 at n=0, we get a scale that can be used as the
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¢ scale, so that the values of ¢ can also be read off
automatically.

Fig. 66 is drawn for positive value of p, greater than
unity. This assumes 8> 4, or & between 8 and +.
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If this is not the case arrange the prices in ascending
order of magnitude. & is now between Band y; a—S3,
B—3, d— are all of the same sign, and the nomogram
of Fig. 66 can be used.

93. It is immediately clear that we get exactly simi-
lar results as in § 91, if the fourth quantity is associ-
ated with a in (&, n,) or with b in (&, 75). In the first
case the point (&, 7,) lies on a network of curves,
while (&, n,) and (&, 7s) each lies on a single curve.
In the second case the point (&, 7;) lies on a network
of curves, while (&, n) and (&, #,) each lies on a
single curve.

94. Further Extensions.

It should be fairly obvious to the reader that the
method of determinants for four variables can be
extended to five or to six quantities connected by
appropriate types of equations. If &, », are func-
tions of z, A ; &, 7, are functions of a, x; while &, 73
are functions of b only, then we have by means of the
determinantal method a nomogram in which the first
point (&, n,) lies on a network of curves corresponding
to constant A and constant z respectively; (&, 7)
lies on a network of curves corresponding to constant
x and constant a respectively ; (&, #3) lies on a single
b curve. The collinearity of three points means that
the quantities z, X, a, , b given by these three collinear
points all satisfy an equation of the general type

X (@, \){4'(a, ©) —B'(5)} —X'(z,) [ A(a, ) ~ B(b)}
+{4(a, W B'(6)—A'(a, w) B®)} =0,
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where for &, », we write X (z, \), X' (z, A), for &, n,
we write 4 (a, ), A’ (ay, ), for &, 73 we write B (b),
B’ (b).

If now &, 7, are functions of z, A ; &, #, of a,
and &, 7 of b, v, each of the three points is defined
by a network, and the collinearity of three points
means that the six quantities z, \, @, #, b, » corre-
sponding to these three points are connected by an
equation of the general type

X (z,7){4'(a, u) —B(, v) } —X' (@, \) {4 (a, ») —B(b, ») }
+{A(a, ©)B’'(b, v) —A'(a, u)B(b, v)} =0,

where &, », are written X (z, A), X' (z, A), &, », are
written 4 (a, r), A’ (a, »), &, 7, are written B (b, v),
B’ (b, »).

Other applications suggest themselves, but suffi-
cient has been sald to indicate the value of the
determinantal method and the fruitfulness of its
application.

Examprres IX.
1. Investigate the nomogram given by the determinantal
equation 0, z, 1 ]=0.
1, a, 1
-1, b, 1

2. Construct the determinantal equation appropriate to the
nomogram for z=2a —1b.

3. Write down the determinantal equation for the nomogram

42
X=—P—.
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4. If &,, n, are given functions of a, and £,, x5 are respectively
the same functions of b, show that in the resulting nomogram
a and b are measured on the same curve.

Hence construct the nomogram for
r— a—b

loga—logd
by the use of the determinantal form

Show that the equation of the curve for a and b is
£+7log7n=0.

5. Examine the meaning of the case in which £,, n, are given
functions of z; £,, 7, are the same given functions respectively
of a ; and &;, &, are the same given functions respectively of &.

6. Put the formula

sin z =g +bx
in the determinantal form, using
E 2= 4> Na= a‘,‘
5 3= — 1 » Ma= b H
with &, n, as functions of z.

7. Construct a nomogram for
z* +Ar® +ax® +b=0,
using L=—-1, n=a;
§a=0, ng=b.
8. Construct a nomogram for
a sinh  +b cosh =e¢,
using £,=0, Na=a;
£3=1, 13=>0
Show that the z curves, that is, the curves with constant ¢, are
a family of parabolas, which have a common axis ana a common
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vertex, while the ¢ curves (with constant x) are lines parallel to
the a, b scales.

9. Prove by means of the determinantal method for nomo-
grams that there are no real unequal values of three quantities

a, b, ¢, such that
a’~ b =1.

10. Prove that there is only one value of = for which the
3 1
quantity (1 +2)7

has a given positive value, less than e,



